Involuntary Unemployment and the Business Cycle

Lawrence Christiano, Mathias Trabandt and Karl Walentin
Background

• Much progress building DSGE models for the purpose of analyzing monetary policy.

• Benchmark model: basic goods, labor markets, monetary policy.

• Extensions:
 – financial frictions.
 – unemployment, labor force.
What We Do:

- We investigate a particular approach to modeling unemployment.
 - Hopenhayn and Nicolini (1997), Shavell and Weiss (1979)
- We explore the implications for monetary DSGE models.
 - Simple three equation NK model
 - NAIRU, Okun’s gap, natural rate of unemployment.
 - Standard empirical NK model (e.g., CEE, SW)
 - Estimate the model.
 - Does well reproducing response of unemployment and labor force to three identified shocks.
Unemployment

• To be ‘unemployed’ in US data, must
 – be ‘willing and able’ to work.
 – make efforts to find a job.

• Empirical evidence: losing your job is a bad thing.
 – consumption drops typically about 10 percent upon the loss of a job (Gruber, 1997, Chetty and Looney, 2006)
 – Much discussion in the press about the hardship experienced by the unemployed in the current recession.

• Current monetary DSGE models with ‘unemployment’:
 – Utility **jumps** when you lose your job.
 – Finding a job requires **no** effort.
 – US Census Bureau employee dropped into current monetary DSGE models would find zero unemployment.
What we do:

• Explore the simplest possible model of unemployment, which satisfies the two key features of unemployment.

• To be unemployed:
 – Must have made recent efforts to find a job.
 • Assume households choose effort, e, which increases the probability, $p(e)$, of finding a job.
 – Transition from unemployment to employment makes you better off.
 • assume household search effort, e, is not publicly observable.
 • full insurance against household labor market outcomes is not possible.
 • under perfect consumption insurance, no one would make an effort to find a job.
Outline

• Insert our model of unemployment into
 – Simple Clarida-Gali-Gertler (CGG) NK model.
 – CEE model: evaluate model’s ability to match US macroeconomic data, including unemployment and labor force
CGG Model

• Goods Production:

\[
Y_t = \left[\int_0^1 Y_{i,t}^{\lambda_f} \, di \right]^{\lambda_f}, \quad 1 \leq \lambda_f < \infty.
\]

• Monopolists produce intermediate goods
 – Technology:

\[
Y_{i,t} = A_t h_{i,t}
\]

– Calvo sticky prices:

\[
P_{i,t} = \begin{cases}
 P_{i,t-1} & \text{with prob. } \xi_p \\
 \text{chosen optimally} & \text{with prob. } 1 - \xi_p
\end{cases}
\]

– Enter competitive markets to hire labor.
CGG Model: Monetary Policy

• Taylor rule:

\[\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t \]

• Here:

– \(\hat{x}_t \) output gap (percent deviation of output from natural output)

• Natural equilibrium:

– Monopoly power and inflation distortions extinguished.
Households

• This is where the new stuff is........
Typical Household During Period

Draw privately observed, idiosyncratic shock, \(l \), from Uniform, \([0, 1]\), that determines utility cost of work:

\[
F + \zeta_t (1 + \sigma_L) l^{\sigma_L}.
\]

After observing \(l \), decide whether to join the labor force or stay out.

Household that stays out of labor market does not work and has utility

\[
\log c_t
\]

Household that joins labor force tries to find a job by choosing effort, \(e \), and receiving ex ante utility

\[
p(e_t) \left[\log(c_t^w) - F - \zeta_t (1 + \sigma_L) l^{\sigma_L} - \frac{1}{2} e_t^2 \right] + (1 - p(e_t)) \left[\log(c_t^u) - \frac{1}{2} e_t^2 \right]
\]

\[
p(e_t) = \eta + ae_t
\]
Household Insurance

• They need it:
 – Idiosyncratic work aversion.
 – Job-finding effort, \(e \), may or may not produce a job.

• Assume households gather into large families, like in Merz and Andolfatto
 – With no private information:
 • Households with low work aversion told to make big effort to find work.
 • All households given same consumption.
 • Not feasible with private information.

 – With private information
 • To give households incentive to look for work, must make them better off in case they find work.
Optimal Insurance

• Relation of family to household standard principal/agent relationship.
 – family receives wage from working households
 – family observes current period employment status of household.

• For family with given C, h:
 – allocates consumption: c_t^w, c_t^u
 – c_t^w / c_t^u must be big enough to provide incentives.
 – must satisfy family resource constraint:
 $$h_t c_t^w + (1 - h_t) c_t^u = C_t.$$
Family Indirect Utility Function

• Utility:

\[u(C_t, h_t, \xi_t) = \log(C_t) - z(h_t, \zeta_t), \]

• Where

\[
z(h_t, \zeta_t) = \log[h_t(e^{F+\xi_t(1+\sigma_L)f(h_t,\zeta_t)^{\sigma_L}} - 1) + 1]
\]

\[
- \frac{a^2 \xi_t^2 (1 + \sigma_L) \sigma_L^2}{2\sigma_L + 1} f(h_t, \zeta_t)^{2\sigma_L+1} - \eta \xi_t \sigma_L f(h_t, \zeta_t)^{\sigma_L+1}.
\]
Family Problem

$$\max_{\{C_t, h_t, B_{t+1}\}} \sum_{t=0}^{\infty} E_0 \beta^t [\log(C_t) - z(h_t, \zeta_t)]$$

— Subject to:

$$P_tC_t + B_{t+1} \leq B_t R_{t-1} + W_t h_t + \text{Transfers and profits}_t.$$

• Family takes market wage rate as given and tunes incentives so that marginal cost of extra work equals marginal benefit:

$$C_t z_h(h_t, \zeta_t) = \frac{W_t}{P_t}.$$
Observational Equivalence Result

• Because of the simplicity of the assumptions, the model is observationally equivalent to standard NK model, when represented in terms of output, interest rate, inflation:

\[
\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p} (1 + \sigma_z) \hat{\lambda}_t
\]

\[
\hat{\lambda}_t = E_t \hat{\lambda}_{t+1} - (\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^*)
\]

\[
\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R)[r_\pi \hat{\pi}_t + r_y \hat{\lambda}_t] + \varepsilon_t,
\]
Unemployment Gap

• Can express everything in terms of unemployment gap:

\[u_t^g = -\kappa^{okun} \hat{x}_t. \]

\[\kappa^{okun} = \frac{a^2 \zeta \sigma_L^2 m^{\sigma_L} (1 - u)}{1 - u + a^2 \zeta \sigma_L^2 m^{\sigma_L}} > 0. \]

\[u_t^g = u_t - u_t^* \]

actual unemployment - natural rate of unemployment

Non-accelerating inflation rate of unemployment, NAIRU
Unemployment Gap

\[
\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} - \kappa u_t^g
\]

\[
u_t^g = \kappa^{okun} E_t u_{t+1}^g + \kappa^{okun} \left(\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}^*_t \right)
\]

\[
\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) \left[r_\pi \hat{\pi}_t - \frac{r_y}{\kappa^{okun}} u_t^g \right] + \varepsilon_t
\]

\[
\kappa \equiv \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p} \frac{1 + \sigma_z}{\kappa^{okun}}
\]
Put this all into a big DSGE Model

• Habit persistence in preferences

• Variable capital utilization.

• Investment adjustment costs.

• Wage setting frictions as in Erceg-Henderson-Levin.
Figure 4: Dynamic Responses of Labor Market Variables to Three Shocks

- Unemployment Rate
- Labor Force

Monetary Shock

Neutral Tech. Shock

Involuntary Unemployment Model

VAR 95% VAR Mean Involuntary Unemployment Model
Questions Raised by Analysis

• Is consumption (utility) inequality between employed and non-employed bigger in booms?
 – what evidence we have is on the cross-section variance of consumption, not consumption premium across employed and unemployed.

• Does higher unemployment in recessions reflect reduced search intensity?
 – discouraged workers: people ‘available to work’ but are not currently looking because they think there are no jobs.
 – number jumped 70 percent, 2008Q1 to 2009Q1.
Conclusion

• Integrated a model of ‘involuntary unemployment’ into monetary DSGE model.

• Results:
 – Obtained a theory of the NAIRU
 – Able to match responses of unemployment and labor force to macro shocks.