Monetary and macroprudential policy with foreign currency loans*

Michał Brzoza-Brzezina† Marcin Kolasa‡ Krzysztof Makarski§
February 2014

Abstract

In a number of countries a substantial proportion of loans is denominated in foreign currency. In this paper we demonstrate how their presence affects the economy. To this end we construct a small open economy model with financial frictions where loans can be taken in domestic or foreign currency. The model is calibrated for Poland - a typical small open economy with a large share of foreign currency loans (FCL). We show that FCLs negatively affect the transmission of monetary policy but do not impact on the effectiveness of macroprudential policy. We also demonstrate that FCLs increase welfare when domestic interest rate shocks are strong and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the stochastic environment FCLs are welfare reducing. Finally, we show that regulatory policies that correct the share of FCLs may cause a cyclical slowdown.

JEL: E32, E44, E58

Keywords: foreign currency loans, monetary and macroprudential policy, DSGE models with banking sector

*The views expressed herein are those of the authors and not necessarily those of the Narodowy Bank Polski or the Warsaw School of Economics. We would like to thank Łukasz Drozd for helpful discussions. Comments received at the 2nd NBP Summer Workshop are gratefully acknowledged as well.

†Narodowy Bank Polski and Warsaw School of Economics; Email: michal.brzoza-brzezina@nbp.pl.
‡Narodowy Bank Polski and Warsaw School of Economics; Email: marcin.kolasa@nbp.pl.
§Narodowy Bank Polski and Warsaw School of Economics; Email: krzysztof.makarski@nbp.pl.
1 Introduction

Foreign currency loans (FCL) have become highly popular in many emerging and even some advanced economies in the 2000s. In the European Union the problem affected i.a. Bulgaria, Hungary, Romania, Poland and even Austria. In the former three countries in 2013 FCLs accounted for approximately 60% of loans to the non-banking sector, in Poland this share was close to 30% and in Austria slightly below 20% (SNB, 2013). In the mortgage segment the share was even higher, for instance in Poland, for which our model is calibrated, over 50% of mortgage loans have been denominated in foreign currency in 2013. Foreign currency loans offer some advantages to borrowers, in particular lower interest rates and possibly longer maturities. At the same time, however, they constitute an important source of systemic risk in the economy. Sharp depreciations of the domestic exchange rate bring about a surge in servicing costs expressed in the borrowers’ domestic (income) currency, which may, in most extreme cases, lead to mass defaults and systemic banking crises (Yesin, 2013).

FCLs have also been recognized to impact on the transmission of domestic monetary policy. In particular, the impact of domestic interest rates on the economy may be weaker when borrowers are able to substitute domestic currency loans (DCL) for FCLs when the relative interest rate rate rises. Given the rapid expansion of macroprudential supervision, understanding the link between FCLs and regulatory instruments seems of particular importance too. The impact of foreign currency lending on the economy has repeatedly gained attention of policymakers including microprudential (regulatory), macroprudential and monetary authorities (Dübel and Walley, 2010; ESRB, 2011; Bakker et al., 2012; Lim et al., 2011). In many countries lending in foreign currency has been limited over the last few years.

Our paper analyzes the role of FCLs through the lens of a dynamic stochastic general equilibrium (DSGE) model. As such it connects two important streams in the literature: the modeling literature on financial frictions and the empirical literature on the relationship between FCLs and macroeconomic policy.

From the modeling perspective we build on the seminal papers of Kiyotaki and Moore (1997) and Iacoviello (2005) who developed a workhorse DSGE model with financial frictions in the form of collateral constraints and housing that serves as collateral. Models based on this framework have been successfully applied in the past to analyze a number of related issues like the impact of macroprudential policy on the business cycle or spillovers from the housing market to the economy (e.g. Gerali et al., 2010; Iacoviello and Neri, 2010). This framework fits also our needs since it contains the most important elements that play a role in our research, i.e. mortgage loans and the possibility to introduce regulatory policy in the form of LTV requirements. Of course, the framework is modified in several directions, in particular we extend it to a small open economy setting and introduce FCLs.
Regarding the main topic at hand, our study relates to the literature on foreign currency lending and its connections with monetary and macroprudential policies. This literature has a strong empirical flavor. Regarding links to monetary policy, the relationship between interest rates, exchange rates and FCLs is crucial. As documented in Magud et al. (2011), both fixed exchange regimes or high interest rate differentials increase the share of foreign currency loans. The latter finding has been confirmed in several other studies including Egert et al. (2007), Rosenberg and Tirpak (2009) and Brzoza-Brzezina et al. (2010) and is crucial to understand how FCLs can weaken monetary transmission. Especially the last paper deals explicitly with this problem. Based on a panel of four Central European countries the study shows that after a monetary policy tightening, more than 50% of eliminated DCLs can return to the economy as FCLs. Much less research has been conducted on the link between macroprudential policy and FCLs. The question of interest so far has been whether regulation is able to reduce the share of FCLs in the economy. For instance Lim et al. (2011) show that some regulatory actions targeted at limiting the amount of FCLs have been efficient in the past. However, to our knowledge, the impact of FCLs on the effectiveness of macroprudential policy has not been analyzed so far.

In contrast to the existing literature, this paper offers a more theoretical, but nevertheless quantitative, perspective on the subject. We construct a microfounded small open economy model with domestic and foreign currency loans. The model is calibrated to Poland, a typical small open economy with a relatively large share of FCLs. Next we apply the model to show how the presence of FCLs affects monetary and macroprudential policy transmission. Finally, we analyze the welfare implications of foreign currency lending. To our knowledge this is the first paper to analyze FCLs from this normative perspective. Moreover, as mentioned earlier, the implications of FCLs for macroprudential policy have not been analyzed before, either.

Our main findings are as follows. First, foreign currency loans negatively affect the transmission of monetary policy but do not significantly impact on the effectiveness of macroprudential policy. Second, we find that FCLs increase welfare when domestic interest rate shocks are strong and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the complete stochastic environment FCLs are welfare reducing. Third, eliminating the described inefficiencies through FCL discriminating regulation has a short-run contractionary impact on the economy.

The rest of the paper is structured as follows. Section two describes the model and section three its calibration. Section four discusses the impact of foreign currency loans on the transmission mechanisms of monetary and macroprudential policy and on welfare. Section five concludes.
2 Model

Our departure point is a standard New Keynesian framework for a small open economy, which we extend to incorporate credit in a way that allows us to accommodate both domestic and foreign currency denomination of loans. In what follows we describe in detail our extension, which concerns mainly the household sector, and provide only a brief summary of the model’s remaining building blocks. A full list of model equations can be found in the Appendix.

2.1 Households

To introduce credit, we distinguish between two types of households whose preferences differ in the degree to which they discount the future utility flows. In this way we obtain a distinction between natural borrowers (impatient households) and lenders (patient households), denoted by I and P, respectively. Within each group, a representative agent i maximizes

$$
\mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta_t^i \varepsilon_{u,t} \left[\log(c_{i,t}(t) - \xi c_{i,t-1}) + \varepsilon_{\chi,t} A_h \log \chi_{i,t}(t) - A_n \frac{n_{i,t}(t)^{1+\sigma_n}}{1 + \sigma_n} \right] \right\}
$$

for $i = \{I, P\}$ and $\beta_I < \beta_P$. In the formula above, c_t is consumption, χ_t denotes housing stock and n_t is labor supply. There are two stochastic disturbances affecting households’ preferences, common to patient and impatient households: a standard intertemporal shock $\varepsilon_{u,t}$ and a housing preference shock $\varepsilon_{\chi,t}$.

Patient households’ maximization is subject to a standard budget constraint

$$
P_t c_{P,t}(t) + P_t (\chi_{P,t}(t) - (1 - \delta_\chi) \chi_{P,t-1}(t)) + P_k(t) (k_t(t) - (1 - \delta_k) k_{t-1}(t)) + D_t (t) \leq W_t n_{P,t}(t) + R_{H,t} L_{H,t} - \Pi_t + T_{P,t}
$$

where k_t is physical capital, $R_{k,t}$ denotes its rental rate, Π_t is profits from monopistically competitive firms and banks, $T_{i,t}$ is lump-sum net transfers, $P_{\chi,t}$ and $P_{k,t}$ denote housing and physical capital prices, $W_{i,t}$ is nominal wage while D_t stands for deposits denominated in domestic currency and paying risk-free rate R_t, fully controlled by the monetary authority.

Impatient households do not accumulate physical capital, do not hold any equity and can take loans both in domestic and foreign currency. Hence, their budget constraint can be written as

$$
P_t c_{I,t}(t) + P_t (\chi_{I,t}(t) - (1 - \delta_\chi) \chi_{I,t-1}(t)) + R_{H,t-1} L_{H,t-1}(t) + S_t R_{F,t-1} L_{F,t-1}(t) \leq W_t n_{I,t}(t) + L_t (t) + T_{I,t}
$$

where $L_{H,t}$ and $L_{F,t}$ are domestic and foreign currency loans, $R_{H,t}$ and $R_{F,t}$ denote interest
paid on these loans, S_t is the nominal exchange rate and the loan aggregate is defined using the following constant elasticity of substitution (CES) function

$$L_t(t) = \left[\frac{1}{\eta_{L,t}} L_{H,t}(t) \frac{\phi_{L-1}}{\phi_L} + (1 - \eta_{L,t}) \frac{1}{\phi_L} (S_t L_{F,t}(t)) \frac{\phi_{L-1}}{\phi_L} \right]^{\frac{\phi_L}{\phi_{L-1}}},$$

(4)

where $\eta_{L,t}$ denotes share of domestic currency loans in total loans that is governed by the autoregressive stochastic process. The formula above implies that we treat domestic and foreign currency loans as imperfect substitutes even in a non-stochastic environment. This modeling choice can be interpreted as a short-cut for households’ preferences or implicit costs of changing the loan portfolio structure.

Additionally, impatient households’ optimization is subject to the following collateral constraints

$$R_{H,t} L_{H,t}(t) + \mathbb{E}_t \{ R_{F,t} S_{t+1} L_{F,t}(t) \} \leq m_t (1 - \delta) \mathbb{E}_t \{ P_{\chi,t+1} \chi_{I,t} \}$$

(5)

where m_t denotes the loan to value (LTV) ratio on total loans. We assume that it is set by the macroprudential authority.

2.2 Banks

Both types of loans are supplied by a continuum of monopolistically competitive banks indexed by j, who accept deposits from patient households and refinance the rest by borrowing from abroad. A representative bank maximizes

$$\mathbb{E}_0 \left\{ \beta_p \frac{u_{P, t+1}}{P_{t+1}} \left[R_{H,t}(j) L_{H,t}(j) + S_{t+1} R_{F,t}(j) L_{F,t}(j) - R_t D_t(j) - S_t D_t^*(j) \right] \right\}$$

(6)

subject to the flow of funds constraint

$$L_{H,t}(j) + S_t L_{F,t}(j) = D_t(j) + S_t D_t^*(j)$$

(7)

and the demand for loans from impatient households implied by the following Dixit-Stiglitz loan aggregators (for $h = \{H, F\}$)

$$\int_0^{\omega_t} L_{h,t}(t) dt = \left[\int_0^1 L_{h,t}(j)^{\frac{1}{\mu_L}} dj \right]^{\mu_L}$$

(8)

where ω_t is the relative size of impatient households, $u_{i,t}$ is marginal utility of real income, D_t^* is borrowing from abroad, R_t^* is the interest rate controlled by the foreign monetary authority.
and \(\rho_t \) is the risks premium that depends on foreign debt and risk premium shocks.\(^1\)

2.3 Other blocks

Since the rest of the model is fairly standard, we only briefly summarize its main components.

Output is produced by monopolistically competitive firms that combine labor and capital services using the standard Cobb-Douglas technology. Their prices are set in a staggered fashion according to the Calvo scheme and are sticky in the currency of destination market (local currency pricing). Labor supplied by patient and impatient households is aggregated into labor services using a CES technology. Capital and housing are purchased by households from perfectly competitive capital and housing goods producers who combine the existing stocks with capital- and housing-specific investment, subject to adjustment costs and asset-specific shocks. Final consumption and capital investment goods are defined as CES aggregators of domestic and foreign goods while residential investment and government purchases are assumed to have only domestic content. As typically done in a small open economy setup, the foreign block is exogenous and the three key foreign variables (output, inflation and the interest rate) are assumed to follow a first-order vector autoregression.

The model is closed by imposing a standard set of market clearing conditions and defining the rules for the fiscal, monetary and regulatory authorities. More specifically, the government spending is modeled as an exogenous process and the lump-sum taxes levied on households are adjusted such that the budget is balanced each period. The central bank adjusts its short-term interest rates according to a Taylor-like rule that allows for interest rate smoothing and includes i.i.d. monetary shocks. Finally, the two instruments set by the regulatory authority are assumed to follow independent exogenous processes.

3 Calibration

We calibrate the model to match the Polish data. Several parameters are calibrated to match the key steady state ratios, reported in Table 1, using the 2000-2012 averages for Poland as targets. Other parameters are taken from the literature. The calibrated values of structural parameters are summarized in Table 2. The parameters determining the evolution of stochastic shocks are calibrated to match the model moments to the data and presented in Table 3. Throughout, the unit of time is one quarter. All data are detrended with Hodrick-Prescott filter.

We choose 0.0054 as the housing stock depreciation rate to get the long the long-run residential investment share in output equal to 2.8%. The housing weight in utility is set to

\[^1\]The risk premium is introduced only to render the model stationary and calibrated such that it does not substantially affect the model dynamics.
0.56 to match the steady state housing stock to output ratio of 1.3. The share of impatient household is calibrated to 0.75 to fit the share of mortgage loans to output ratio equal to 75%. After Coenen et al. (2008), we choose transfers from patient to impatient agents so that the consumption of the impatient agents is not more than 25% lower than that of the patient agents. Finally, we calibrate the markup in the banking sector to match the average spread between the lending rate and the policy rate of 190 bp annually.

While calibrating households’ preferences we follow the literature. In particular, similarly to Iacoviello and Neri (2010), we set the discount factors for patient and impatient households to 0.993 and 0.985, respectively. The inverse of the Frisch elasticity as well as the inverse of the intertemporal elasticity of substitution in consumption we set to 2. Following Brzoza-Brzezina et al. (2011) we calibrate the degree of habit formation in consumption to 0.75. We pick 0.85 as the steady-state LTV ratio.

The steady state markups in the labor and product markets are equal to 20%. The capital share in output is set to a standard value of 0.32. Following Coenen et al. (2008) we calibrate the elasticity of substitution between domestic and imported variety to 1.5 and the elasticity of substitution between patient and impatient labor to 6.\(^2\) We choose elasticity of substitution between foreign and domestic currency loans to be 6. Setting the weight of labor in utility to 110 allows us to match the share of working time of 32%.

We calibrate price stickiness in line with Brzoza-Brzezina et al. (2011), which additionally is supported by empirical evidence on price stickiness in Poland and the euro area, see Macias and Makarski (2013) and Dhyne et al. (2006). The Calvo probabilities for domestic prices, import and export prices are set to 0.75. The sensitivity of the risk premium is fixed at 0.02, which ensures that foreign debt is stabilized at zero in the long run without substantially affecting the model’s short-run dynamics.

As far as the Taylor rule for monetary policy is concerned we assume a standard set of parameters in line with the estimated DSGE models for Poland, i.e. interest rate smoothing equal to 0.75, the long-run response to inflation of 2 and that to output equal to 0.5. The steady state inflation rate is set to 0.5% quarterly, which is close to the Narodowy Bank Polski (central bank of Poland) inflation target.

As far as the stochastic shocks are concerned we use the following procedure. For the three variables describing the behavior of foreign output, inflation and interest rate, we use the data for the euro area and since they are exogenous to the model and directly observed we estimate the autoregressive processes that shape their behavior. Next, we take the residuals from these there equations and compute correlations between them. We do the same with government expenditure by fitting an autoregressive process. We calibrate the remaining stochastic shocks as well as the elasticity of the residential investment adjustment cost and non-residential investment adjustment cost so that the weighted distance between moments

\(^2\)Coenen et al. (2008) distinguish between Ricardian and rule-of-thumb agents.
from the data and the model is minimized. This procedure is similar to the simulated method of moments used e.g. in Ruge-Murcia (2012). The only difference is that in our case we do not need to perform simulations. Consider a stationary data \(x_t, t = 1, 2, ..., T \). Denote the vector of moments computed from data \(x_1, x_2, ..., x_t \) as \(m(x_t) \) with the \(m(x_T) \) being the vector of moments on the whole sample. In our case we use the standard deviations and first order autocorrelations of the following variables: output, consumption, non-residential investment, residential investment, inflation, interest rate, domestic currency mortgage loans, foreign currency mortgage loans and real exchange rate. Next, given any parameter specification (for which there exists solution to the model) \(\theta \in \Theta \) we can compute moments from the model \(m(x(\theta)) \). The parameters \(\hat{\theta} \) are chosen as follows

\[
\hat{\theta} = \arg \max_{\theta \in \Theta} [m(x_T) - m(x(\theta))]'W[m(x_T) - m(x(\theta))]
\]

where \(W \) is diagonal matrix of the long-run variance of the moments computed using the Newey-West estimator with a Barlett kernel and bandwidth given by the integer of \(4(T/100)^{2/9} \) where \(T \) denotes the sample size. This procedure produces the parameters of the stochastic process presented in Table 3 and the elasticity of the residential investment adjustment cost and non-residential investment adjustment cost in Table 2.

Next, in order to show the workings of our model, we present the moments from the model against the ones from the data, see Table 4. We obtain adequate data fit. The only downside is the mismatch of correlation of inflation with output and underestimation of volatility of real exchange rate. But, given that the correlation of output with inflation varies over time and the fact that real exchange rate is usually underestimated in the class of model, we are happy with our calibration. Next, we show the effects of monetary and macroprudential policies in our model. For the monetary policy shock we use the parameters of the Taylor rule described above. For the macroprudential policy we consider an autoregressive (with the autoregression coefficient equal to 0.95) innovation to the LTV ratio that lowers it by 1 pp (initially LTV declines from 0.85 to 0.84).

The response of the economy to the monetary policy shock is presented in Figure 1. An increase in the interest rate raises costs of lending and therefore loans decline. Lower loans decrease demand for consumption goods and housing by impatient households, which lowers consumption and residential investment. Higher interest rates increase the opportunity cost of capital therefore non-residential investment fall. A contraction in aggregate demand lowers output and inflation.

The impulse response function to an LTV shock is shown in Figure 2. A negative shock to the LTV ratio implies a tightening of lending standards for impatient households. In response they borrow less and have to reduce their consumption and the housing stock. This leads to a decline in residential investment. Additionally, lower aggregate demand discourages
non-residential investment and leads to lower output and inflation.

4 The impact of foreign currency loans on policy and welfare

4.1 Foreign currency loans and effectiveness of monetary and regulatory policies

In what follows we check how foreign currency loans affect the transmission of monetary policy. The relevant impulse response functions are presented in Figure 3. As a benchmark we show the responses to a monetary policy shock in case of no FCLs. In this case we have the standard financial accelerator at work, which, as known from the literature, amplifies monetary transmission. Lower lending after the monetary policy shock drives down housing demand, lowers house prices and leads to a tightening of the collateral constraint. As a result consumption declines additionally and so do output and inflation. The final impulse response assumes that all loans are denominated in foreign currency. In this case the financial accelerator is much weaker, since the relevant (i.e. foreign) interest rate does not change. Impulse responses for our calibrated case (with 50% of FCLs) are located in between.

Our second experiment shows how the denomination of loans affects the potency of macroprudential policy. This is shown in Figure 4. It turns out that the difference between impulse responses in the cases of domestic and foreign currency lending is negligible. To get a better understanding of this fact one has to refer to the LHS of equation (5). The difference in the behavior of DCLs and FCLs (and as a result in transmission) could arise because of different behavior of the domestic interest rate on the one hand and foreign interest rate and exchange rate on the other. However, given the SOE assumption, the foreign interest rate does not change at all following a domestic LTV shock and the remaining variables move only slightly (for instance the domestic interest rate by 12 basis points), generating negligible differences between the two cases.

4.2 Welfare implications of foreign currency loans

In this section we show how foreign currency loans affect agents’ welfare. Welfare is presented in consumption equivalent units, defined as percent of lifetime consumption that the household would be willing to forgo to have only domestic currency loans in its portfolio (with total loans unchanged). This is shown for different shares $\eta_{L,\chi}$ of DCLs in the portfolio. We report the results separately for patient and impatient households, as well as for aggregate welfare computed as follows (see e.g. Lambertini et al., 2013; Rubio, 2011):
\[U_t = \omega_P (1 - \beta_P) U_{P,t} + \omega_I (1 - \beta_I) U_{I,t} \]

where \(U_{P,t} \) and \(U_{I,t} \) are calculated as second order approximations to the lifetime utility of patient and impatient households respectively. The results are presented for three cases. First we analyze the case where only domestic monetary policy shocks exist in the economy. Next, we move to the case with only risk premium (exchange rate) shocks are switched on. Finally, we show the welfare implications of FCLs in the complete stochastic environment.

Figure 5 shows the welfare effects of FCLs when domestic monetary policy is the only source of shocks. It is intuitive that in such a case agents should dislike DCLs and prefer FCLs, since the latter generate less volatility in their consumption, housing and labor effort. Indeed, impatient agents welfare can be raised by up to 0.18% if DCLs are substituted with FCLs. Also aggregate welfare can be raised by 0.15% in this case. Interestingly, the welfare function is not monotonic, maxima are reached for a 13% share of DCLs in the portfolio. The reason is intuitive. Monetary policy shocks affect not only the domestic interest rate but also the exchange rate. The former discourages from holding DCLs, while the latter raises volatility when FCLs are held. Our welfare function solves the trade-off problem generated by these two effects, but gives a clear preference to FCLs.

An opposite case arises when only risk premium shocks are present. These move primarily the exchange rate and this effect clearly dominates any other spillovers. As evidenced on Figure 6 in this scenario DCLs are preferred unequivocally. If agents decide to hold FCLs their welfare loss is equivalent to 1.3% of lifetime consumption. The number for impatient agents is even higher, and goes up to almost 2%.

Finally, we show the results for the complete stochastic environment. As presented on Figure 7 again there is an internal optimum, although the peak is much less pronounced than in the first case. Welfare is maximized for a DCL share of 87%, but in fact the function if almost flat in the 70-100% region. However, for lower DCL shares welfare losses can be substantial, reaching 1.2% of lifetime consumption if agents hold only FCLs. For impatient agents the loss may attain 1.9%. This result clearly speaks in favor of holding a loan portfolio that primarily consists of domestic currency loans.

4.3 Using regulation to change the share of FCLs

In the preceding two subsections we document that a substantial share of FCLs may decrease the effectiveness of monetary policy and negatively affect welfare. The natural question arises, whether regulation can be used to reduce the share of FCLs and what is the cost of such action. To check this we design two additional regulatory tools, whose role is to change the composition of the loan portfolio. The first tool targets directly the composition
by setting the share of DCLs to total loans:

\[
\frac{l_{H,t}}{l_{H,t} + q_t l_{F,t}} = \vartheta_t
\]

The second instrument works through the cost channel as it introduces a tax \(\tau_t \) on the foreign interest rate that appears in the impatient households’ budget constraint (3) and collateral constraint (5). Of course the instruments are applied separately.

First, we document how the economy reacts if macroprudential policy is used to permanently lower the share of FCLs using \(\vartheta_t \). The experiment, conducted in a non-stochastic environment, assumes that the share of FCLs is permanently reduced from 50% (our benchmark equal to the share desired by households) to 45% (imposed by the regulator). The results depend on the degree of substitutability between DCLs and FCLs. If the two types of loans are perfectly substitutable (\(\phi_L \) goes to infinity), the economy does not react to the shock. Households simply substitute FCLs with DCLs to the extent that keeps total lending unchanged. However, if FCLs and DCLs are imperfect substitutes (\(\phi_L = 6 \)), the story becomes more interesting. On Figure 8 we present the effects of this shock. Borrowers react to the lower imposed share of FCLs by increasing DCLs, though by less than they reduce FCLs. As a result total loans decline. This leads to reduction of residential investment. Even though consumption increases (crowding in effect) total output declines (by more in the short run than in the long run). Inflation initially goes up, but later declines as its behavior is determined by the reaction of the central bank to output, eventually it returns to the inflation target.

In the second experiment the tax \(\tau_t \) is used by the regulator to permanently lower the share of FCLs. If loans are perfectly substitutable households eliminate FCLs from their portfolio completely and nothing else is affected. However, if loans are not perfectly substitutable the result is quite different. As Figure 9 shows, after such policy is applied total loans decline (loans are not perfectly substitutable), which leads to lower residential investment and lower consumption. Here the imposition of tax on FCLs increases debt payments of impatient households and therefore reduction of consumption of impatient households is stronger than in case of simply setting the share of DCLs. Since patient households increase their consumption (crowding in) eventually total consumption increases. Total output falls and its decline during the transition period is larger than in the long run. Inflation behaves similarly as before.

5 Conclusions

Foreign currency loans play an important role in several economies, both advanced and emerging markets. They impact on the economy through several channels. First, they are
a source of exchange rate risk for borrowers. Second, empirical evidence shows that they weaken monetary policy transmission. Third, analogously one could consider their impact on the transmission of macroprudential policy.

In this paper we analyze the role of foreign currency lending in a structural economic model. To this end we construct a small open economy DSGE model with financial frictions in the form of collateral constraints. Households accumulate housing and can take loans in domestic or foreign currency. In this framework we test how the presence of foreign currency lending affects the transmission of monetary and macroprudential policy. Furthermore we analyze the welfare implications of foreign currency loans.

Our main findings are as follows. First, foreign currency loans impair the transmission of monetary policy but do not impact on the effectiveness of macroprudential policy. Second, we find that FCLs increase welfare when domestic interest rate shocks are strong and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the complete stochastic environment FCLs are welfare reducing. Third, we show that restoring the effectiveness of monetary policy or improving welfare through FCL discriminating regulation has a short-run negative impact on the economy.
References

Bakker, Bas B., Giovanni Dell’Ariccia, Luc Laeven, Jérôme Vandenbussche, Deniz Igan, and Hui Tong (2012) ‘Policies for macrofinancial stability: How to deal with credit booms.’ IMF Staff Discussion Notes 12/06, International Monetary Fund

Gerali, Andrea, Stefano Neri, Luca Sessa, and Federico M. Signoretti (2010) ‘Credit and banking in a DSGE model of the euro area.’ Journal of Money, Credit and Banking 42(s1), 107–141

Lambertini, Luisa, Caterina Mendicino, and Maria Teresa Punzi (2013) ‘Leaning against boom-bust cycles in credit and housing prices.’ *Journal of Economic Dynamics and Control* 37(8), 1500–1522

Tables and figures

Table 1: Steady state ratios

<table>
<thead>
<tr>
<th>Steady state ratio</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of government expenditure</td>
<td>0.181</td>
</tr>
<tr>
<td>Import of consumer goods to output ratio</td>
<td>0.11</td>
</tr>
<tr>
<td>Import of capital investment goods to output ratio</td>
<td>0.14</td>
</tr>
<tr>
<td>Residential investment to output ratio</td>
<td>0.028</td>
</tr>
<tr>
<td>Capital investment to output ratio</td>
<td>0.177</td>
</tr>
<tr>
<td>Share of FCLs in total loans</td>
<td>0.6</td>
</tr>
<tr>
<td>Hours worked</td>
<td>0.32</td>
</tr>
<tr>
<td>Housing wealth to output ratio (annual)</td>
<td>1.3</td>
</tr>
<tr>
<td>Debt to output ratio (annual)</td>
<td>0.75</td>
</tr>
<tr>
<td>Spread (annualized)</td>
<td>0.019</td>
</tr>
<tr>
<td>Relative consumption of impatient HHs</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 2: Calibration - parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_P)</td>
<td>0.993</td>
<td>Discount factor, patient HHs</td>
</tr>
<tr>
<td>(\beta_I)</td>
<td>0.985</td>
<td>Discount factor, impatient HHs</td>
</tr>
<tr>
<td>(\delta_H)</td>
<td>0.0054</td>
<td>Housing stock depreciation rate</td>
</tr>
<tr>
<td>(\delta_k)</td>
<td>0.02</td>
<td>Capital stock depreciation rate</td>
</tr>
<tr>
<td>(\omega_I)</td>
<td>0.75</td>
<td>Share of impatient HHs</td>
</tr>
<tr>
<td>(A_X)</td>
<td>0.56</td>
<td>Weight on housing in utility function</td>
</tr>
<tr>
<td>(A_n)</td>
<td>110</td>
<td>Weight on labor in utility function</td>
</tr>
<tr>
<td>(\sigma_n)</td>
<td>2</td>
<td>Inverse of Frisch elasticity of labor supply</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.75</td>
<td>Degree of external habit formation in consumption</td>
</tr>
<tr>
<td>(\theta_w)</td>
<td>0.75</td>
<td>Calvo probability for wages</td>
</tr>
<tr>
<td>(\phi_n)</td>
<td>6</td>
<td>Elasticity of substitution btw. labor of patient and impatient HHs</td>
</tr>
<tr>
<td>(\tau_I)</td>
<td>0.35</td>
<td>Transfers to impatient HHs (relative to government spending)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>1.2</td>
<td>Steady state product markup</td>
</tr>
<tr>
<td>(\theta_H)</td>
<td>0.75</td>
<td>Calvo probability for domestic prices</td>
</tr>
<tr>
<td>(\theta_F)</td>
<td>0.75</td>
<td>Calvo probability for import prices</td>
</tr>
<tr>
<td>(\theta^*_H)</td>
<td>0.75</td>
<td>Calvo probability for export prices</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.32</td>
<td>Output elasticity with respect to capital</td>
</tr>
<tr>
<td>(\kappa_k)</td>
<td>0.337</td>
<td>Capital investment adjustment cost</td>
</tr>
<tr>
<td>(\kappa_X)</td>
<td>11.83</td>
<td>Housing investment adjustment cost</td>
</tr>
<tr>
<td>(\mu_L)</td>
<td>1.0047</td>
<td>Loan markup</td>
</tr>
<tr>
<td>(m)</td>
<td>0.85</td>
<td>Steady state LTV ratio</td>
</tr>
<tr>
<td>(\eta_L)</td>
<td>0.5</td>
<td>Share of domestic currency loans in total loans</td>
</tr>
<tr>
<td>(\vartheta)</td>
<td>0.5</td>
<td>Share of housing stock used as collateral for FCLs</td>
</tr>
<tr>
<td>(\phi_L)</td>
<td>6</td>
<td>Elasticity of substitution btw. domestic and foreign currency loans</td>
</tr>
<tr>
<td>(\pi)</td>
<td>1.005</td>
<td>Steady state inflation</td>
</tr>
<tr>
<td>(\varrho)</td>
<td>0.02</td>
<td>Elasticity of risk premium wrt. foreign debt</td>
</tr>
<tr>
<td>(\gamma_R)</td>
<td>0.75</td>
<td>Interest rate smoothing in Taylor rule</td>
</tr>
<tr>
<td>(\gamma_\pi)</td>
<td>2</td>
<td>Response to inflation in Taylor rule</td>
</tr>
<tr>
<td>(\gamma_\pi)</td>
<td>0.5</td>
<td>Response to output in Taylor rule</td>
</tr>
<tr>
<td>(\eta_c)</td>
<td>0.816</td>
<td>Share of domestic goods in consumption basket</td>
</tr>
<tr>
<td>(\eta_k)</td>
<td>0.205</td>
<td>Share of domestic goods in investment</td>
</tr>
<tr>
<td>(\phi^*_y)</td>
<td>1.5</td>
<td>Price elasticity of exports</td>
</tr>
<tr>
<td>(\phi_c)</td>
<td>1.5</td>
<td>Elasticity of substitution btw. home and foreign consumption goods</td>
</tr>
<tr>
<td>(\phi_k)</td>
<td>1.5</td>
<td>Elasticity of substitution btw. home and foreign investment goods</td>
</tr>
</tbody>
</table>
Table 3: Calibration - stochastic shocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_z</td>
<td>0.92</td>
<td>Productivity shock - autocorrelation</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.0065</td>
<td>Productivity shock - standard deviation</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.63</td>
<td>Preference shock - autocorrelation</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.013</td>
<td>Preference shock - standard deviation</td>
</tr>
<tr>
<td>ρ_p</td>
<td>0.71</td>
<td>Risk premium shock - autocorrelation</td>
</tr>
<tr>
<td>σ_p</td>
<td>0.008</td>
<td>Risk premium shock - standard deviation</td>
</tr>
<tr>
<td>ρ_{η_L}</td>
<td>0.999</td>
<td>Shock to share of DCLs - autocorrelation</td>
</tr>
<tr>
<td>σ_{η_L}</td>
<td>0.011</td>
<td>Shock to share of DCLs - standard deviation</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.0013</td>
<td>Monetary shock - standard deviation</td>
</tr>
<tr>
<td>ρ_y</td>
<td>0.91</td>
<td>Foreign output - autocorrelation</td>
</tr>
<tr>
<td>σ_y</td>
<td>0.006</td>
<td>Foreign output - standard deviation</td>
</tr>
<tr>
<td>ρ_{π}</td>
<td>0.55</td>
<td>Foreign inflation - autocorrelation</td>
</tr>
<tr>
<td>σ_{π}</td>
<td>0.002</td>
<td>Foreign inflation - standard deviation</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.9</td>
<td>Foreign interest rate - autocorrelation</td>
</tr>
<tr>
<td>σ_R^*</td>
<td>0.001</td>
<td>Foreign interest rate - standard deviation</td>
</tr>
</tbody>
</table>

$\text{CORR}(\varepsilon_{\pi}^*, \varepsilon_y^*)$ 0.485 Correlation of residuals from foreign inflation and output equations
$\text{CORR}(\varepsilon_{\pi}^*, \varepsilon_R^*)$ 0.384 Correlation of residuals from foreign inflation and interest rate equations
$\text{CORR}(\varepsilon_R^*, \varepsilon_y^*)$ 0.733 Correlation of residuals from foreign interest rate and output equations

Table 4: Moment matching

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>Output</td>
<td>1.3</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.95</td>
<td>1.17</td>
<td>0.82</td>
</tr>
<tr>
<td>Non-Residential investment</td>
<td>5.96</td>
<td>6.13</td>
<td>0.94</td>
</tr>
<tr>
<td>Residential investment</td>
<td>5.11</td>
<td>5.3</td>
<td>0.82</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.45</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Interest rate</td>
<td>1.7</td>
<td>2.12</td>
<td>0.92</td>
</tr>
<tr>
<td>DCLs</td>
<td>8.97</td>
<td>8.95</td>
<td>0.88</td>
</tr>
<tr>
<td>FCLs</td>
<td>9.84</td>
<td>10.04</td>
<td>0.90</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>7.15</td>
<td>2.16</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Note: All variables are quarterly data for Poland for the period 2000-2012. All variables are detrended with Hodrick-Prescott filter.
Figure 1: Monetary policy shock

Figure 2: Macroprudential policy shock
Figure 3: Foreign Currency Loans and Monetary Policy

Figure 4: Foreign Currency Loans and Macroprudential Policy
Figure 5: Welfare effects of domestic monetary policy shocks

Figure 6: Welfare effects of risk premium shocks
Figure 7: Welfare effects of full composition of shocks

Figure 8: The effects of FCL discrimination under imperfect substitution
Figure 9: The effects of tax on FCL under imperfect substitution
Appendix: List of model equations

In this appendix we present a full list of equations making up our model. Lower-case letters are the real counterparts of the nominal variables defined in section 2. As regards the variables not showing up in the main text and not explicitly defined below, \(q_t \equiv \frac{S_t P_t^*}{P_t} \) is the real exchange rate, \(\pi_t \equiv \frac{P_t}{P_t-1} \) is the inflation rate, \(\Theta_{H,t} \) and \(\Theta_{F,t} \) are the Lagrange multipliers on the collateral constraints for, respectively, domestic and foreign currency loans, \(i_{\chi,t} \) and \(i_{k,t} \) denote residential and capital investment and \(g_t \) is government spending. The variables without time subscripts denote steady states.

Households

Marginal utilities (for \(i = \{I, P\} \))

\[
 u_{i,t} = \varepsilon_{u,t} (c_{i,t} - \xi_{c_{i,t-1}})^{-\sigma_c}
\]

Euler equation for patient households

\[
 u_{P,t} = \beta_P E_t \left\{ u_{P,t+1} \pi_{t+1}^{-1} \right\} R_t
\]

Impatient households’ budget constraint

\[
 c_{I,t} + p_{\chi,t} (\chi_{I,t} - (1 - \delta_{\chi}) \chi_{I,t-1}) + R_{H,t-1} l_{H,t-1} \pi_t^{-1} + q_t R_{F,t-1} (\pi_t^*)^{-1} l_{F,t-1} = w_{I,t} n_{I,t} + l_t + t_{I,t}
\]

Collateral constraint

\[
 R_{H,t} l_{H,t} + R_{F,t} l_{F,t} E_t \left\{ q_{t+1} \pi_{t+1}^{-1} \right\} = \theta_t m_t (1 - \delta_{\chi}) E_t \left\{ p_{\chi,t+1} \pi_{t+1} \chi_{I,t} \right\}
\]

Euler equations for impatient households

\[
 u_{I,t} = \left(\frac{l_{H,t}}{\eta_{L} l_{I,t}} \right)^{\frac{1}{\sigma_{L}}} \left(\beta_I E_t \left\{ \frac{u_{I,t+1}}{\pi_{t+1}} \right\} R_{H,t} + \Theta_t R_{H,t} \right)
\]

\[
 u_{I,t} = \left(\frac{q_t l_{F,t}}{(1 - \eta_{\chi}) l_t} \right)^{\frac{1}{\sigma_{L}}} \left(\beta_I E_t \left\{ \frac{q_{t+1}}{q_t \pi_{t+1}} \right\} R_{F,t} + \Theta_t R_{F,t} E_t \left\{ \frac{q_{t+1} \pi_{t+1}}{q_t \pi_{t+1}^*} \right\} \right)
\]

Loan aggregator

\[
 l_t = \left[\frac{1}{\eta_{L} l_{H,t} \frac{\phi_{q_{t-1}}}{\phi_{L}}} + (1 - \eta_{L}) \frac{1}{\phi_{L}} (q_t l_{F,t} \frac{\phi_{q,t}}{\phi_{L}})^{\phi_{L}-1} \right]^{\frac{1}{\phi_{L}-1}}
\]
Housing Euler equations

\[u_{P,t}p_{x,t} = \varepsilon_{u,t}\varepsilon_{x,t}A\chi_{P,t}^{1-\sigma_x} + \beta_p(1-\delta_x)\mathbb{E}_t\{u_{P,t+1}p_{x,t+1}\} \]

\[u_{I,t}p_{x,t} = \varepsilon_{u,t}\varepsilon_{x,t}A\chi_{I,t}^{1-\sigma_x} + \beta_I(1-\delta_x)\mathbb{E}_t\{u_{I,t+1}p_{x,t+1}\} + \Theta_t\theta_t(1-\delta_x)\mathbb{E}_t\{p_{x,t+1}\} \]

Capital Euler equation

\[u_{P,t}p_{k,t} = \beta_p\mathbb{E}_t\{(1-\delta_p)p_{k,t+1} + \eta_{k,t+1}\} \]

Total consumption

\[c_t = \omega_Ic_{I,t} + (1-\omega_p)c_{P,t} \]

Labor market

Optimal wage set by reoptimizing households (for \(i = \{I, P\} \))

\[(\tilde{\omega}_i)_{t+1}^{\frac{1}{\sigma_n}w_{i,t}} = \Omega_{w,i,t}^{\frac{\mu_{w,i,t}}{\gamma_{w,i,t}}} \]

Auxiliary functions for optimal wages (for \(i = \{I, P\} \))

\[\Omega_{w,i,t} = \mu_{w,i,t}\varepsilon_{u,i,t}\varepsilon_{n,t}A_{n}(w_{i,t})_{t+1}\pi^{\frac{\mu_{w,i,t}}{\gamma_{w,i,t}}} + \beta_i\theta_{w}\mathbb{E}_t\left\{ \frac{\pi}{\pi_{t+1}}^{1-\mu_{w,i,t}}\Omega_{w,i,t+1}\right\} \]

\[\gamma_{w,i,t} = u_{i,t}(w_{i,t})_{t+1}\pi^{\frac{\mu_{w,i,t}}{\gamma_{w,i,t}}} + \beta_i\theta_{w}\mathbb{E}_t\left\{ \frac{\pi}{\pi_{t+1}}^{1-\mu_{w,i,t}}\gamma_{w,i,t+1}\right\} \]

Wage index (for \(i = \{I, P\} \))

\[\frac{1}{w_{i,t}^{\frac{1}{\mu_{w}}} = \theta_{w}\left(\frac{w_{i,t-1}}{\pi_{t+1}} \right)^{\frac{1}{1-\mu_{w}}} + (1-\theta_{w})w_{i,t}^{\frac{1}{1-\mu_{w}}} \]

Labor aggregation (for \(i = \{I, P\} \))

\[n_{i,t} = \left(\frac{w_{i,t}}{w_t} \right)^{-\phi_n} n_t \]
Aggregate wage

\[w_t = \left[\omega_I w_{I,t}^{1-\phi_n} + (1 - \omega_I) w_{P,t}^{1-\phi_n} \right]^{\frac{1}{1-\phi_n}} \]

Capital and housing producers

Capital accumulation

\[k_t = (1 - \delta_k) k_{t-1} + \varepsilon_{ik,t} \left(1 - \frac{k_k}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right)^2 \right) i_{k,t} \]

Price of capital

\[p_{ik,t} = \varepsilon_{ik,t} p_{k,t} \left(1 - \frac{k_k}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right)^2 - \kappa_k \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right) \frac{i_{k,t}}{i_{k,t-1}} \right) + \beta P E_t \left\{ \frac{u_{P,t+1}}{u_{P,t}} \varepsilon_{ik,t+1} p_{k,t+1} \kappa_k \left(\frac{i_{k,t+1}}{i_{k,t}} - 1 \right) \left(\frac{i_{k,t+1}}{i_{k,t}} \right)^2 \right\} \]

Housing accumulation

\[\chi_t = (1 - \delta_\chi) \chi_{t-1} + \varepsilon_{i\chi,t} \left(1 - \frac{k_\chi}{2} \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right)^2 \right) i_{\chi,t} \]

Price of housing

\[p_{H,t} = \varepsilon_{i\chi,t} p_{\chi,t} \left(1 - \frac{k_\chi}{2} \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right)^2 - \kappa_\chi \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right) \frac{i_{\chi,t}}{i_{\chi,t-1}} \right) + \beta P E_t \left\{ \frac{u_{P,t+1}}{u_{P,t}} \varepsilon_{i\chi,t+1} p_{\chi,t+1} \kappa_\chi \left(\frac{i_{\chi,t+1}}{i_{\chi,t}} - 1 \right) \left(\frac{i_{\chi,t+1}}{i_{\chi,t}} \right)^2 \right\} \]

Final goods producers

Aggregators

\[c_t = \left(1 - \eta_c \right) \frac{1}{\phi_c} c_{F,t}^{\phi_c-1} + \frac{1}{\phi_c} c_{H,t}^{\phi_c-1} \]

\[i_{k,t} = \left(1 - \eta_k \right) \frac{1}{\phi_k} i_{kF,t}^{\phi_k-1} + \frac{1}{\phi_k} i_{kH,t}^{\phi_k-1} \]
Demands

\[c_{F,t} = (1 - \eta_c) p_{F,t}^{-\phi_c} c_t \]
\[c_{H,t} = \eta_c p_{H,t}^{-\phi_c} c_t \]

\[i_{kF,t} = (1 - \eta_k) \left(\frac{p_{F,t}}{p_{ik,t}} \right)^{-\phi_k} i_{k,t} \]
\[i_{kH,t} = \eta_k \left(\frac{p_{H,t}}{p_{ik,t}} \right)^{-\phi_k} i_{k,t} \]

Intermediate goods producers

Marginal cost

\[mc_t = \frac{1}{\alpha^\alpha (1 - \alpha)^{1-\alpha}} \frac{1}{r_{k,t} \varepsilon_{z,t} w_t^{1-\alpha}} \]

Optimal factor proportions

\[\frac{r_{k,t}}{w_t} = \frac{\alpha}{1 - \alpha} \frac{n_t}{k_{t-1}} \]

Optimal prices set by reoptimizing firms for domestic market and exports

\[\tilde{p}_{H,t} = \mu \frac{\Omega_{H,t}}{\Upsilon_{H,t}} \]
\[\tilde{p}_{H,t}^* = \mu \frac{\Omega_{H,t}^*}{\Upsilon_{H,t}^*} \]

Auxiliary functions for optimal prices

\[\Omega_{H,t} = u_{P,t} mc_t p_{H,t}^{\mu-t} y_{H,t} + \beta p \theta_H \mathbb{E}_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{1-\mu} \Omega_{H,t+1} \right\} \]
\[\Omega_{H,t}^* = u_{P,t} mc_t (p_{H,t})^{\mu-t} y_{H,t} + \beta p \theta_H^* \mathbb{E}_t \left\{ \left(\frac{\pi^*}{\pi_{t+1}} \right)^{1-\mu} \Omega_{H,t+1}^* \right\} \]
\[\Upsilon_{H,t} = u_{P,t} p_{H,t}^{\mu-t} y_{H,t} + \beta p \theta_H \mathbb{E}_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{1-\mu} \Upsilon_{H,t+1} \right\} \]
\[\Upsilon_{H,t}^* = u_{P,t} q_t (p_{H,t})^{\mu-t} y_{H,t} + \beta p \theta_H^* \mathbb{E}_t \left\{ \left(\frac{\pi^*}{\pi_{t+1}} \right)^{1-\mu} \Upsilon_{H,t+1}^* \right\} \]
Price indexes for goods produced domestically and for exports

\[p_{H,t}^{\frac{1}{\pi}} = \theta_H \left(p_{H,t-1} \frac{\pi}{\pi_t} \right)^{\frac{1}{\pi}} + (1 - \theta_H) \tilde{p}_{H,t}^{\frac{1}{\pi}} \]

\[(p_{H,t}^*)^{\frac{1}{\pi}} = \theta_H^* \left(p_{H,t-1} \frac{\pi^*}{\pi_t^*} \right)^{\frac{1}{\pi}} + (1 - \theta_H^*) (\tilde{p}_{H,t}^*)^{\frac{1}{\pi}} \]

Importing firms

Optimal prices set by reoptimizing importers

\[\tilde{p}_{F,t} = \mu \frac{\Omega_{F,t}}{\Upsilon_{F,t}} \]

Auxiliary functions for optimal prices

\[\Omega_{F,t} = u_{P,t} q_t p_{F,t}^{\frac{\mu}{\pi_{t-1}}} y_{F,t} + \beta P \theta_F \mathbb{E}_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \Omega_{F,t+1} \right\} \]

\[\Upsilon_{F,t} = u_{P,t} p_{F,t}^{\frac{\mu}{\pi_{t-1}}} y_{F,t} + \beta P \theta_F \mathbb{E}_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \Upsilon_{F,t+1} \right\} \]

Price index for imports

\[p_{F,t}^{\frac{1}{\pi}} = \theta_F \left(p_{F,t-1} \frac{\pi}{\pi_t} \right)^{\frac{1}{\pi}} + (1 - \theta_F) \tilde{p}_{F,t}^{\frac{1}{\pi}} \]

Banks

Interest on loans

\[R_{H,t} = \mu_L R_t \]

\[R_{F,t} = \mu_L \rho_t R_t^* \]

Uncovered interest rate parity

\[\mathbb{E}_t \left\{ u_{P,t+1} \left(\frac{R_t}{\pi_{t+1}} - \frac{q_{t+1}}{q_t} \frac{\rho_t R_t^*}{\pi_{t+1}} \right) \right\} = 0 \]

Risk premium

\[\rho_t = 1 + \varrho \left[\exp \left(\frac{d^* q_t}{y_t} - \frac{d^* q}{y} \right) - 1 \right] + \epsilon_{\rho,t} \]
Fiscal and monetary authority

Taxes levied on impatient households

\[\omega_{t} = \tau_{t} p_{H,t} g_{t} \]

Taylor rule

\[\frac{R_{t}}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_{R}} \left[\left(\frac{\pi_{t}}{\pi} \right)^{\gamma_{\pi}} \left(\frac{y_{t}}{y} \right)^{\gamma_{y}} \right]^{1-\gamma_{R}} \varepsilon_{R,t} \]

Market clearing

Production for domestic market

\[y_{H,t} = c_{H,t} + i_{k,H,t} + i_{x,t} + g_{t} \]

Imports

\[y_{F,t} = c_{F,t} + i_{F,k,t} \]

Export demand

\[y_{H,t}^{*} = \eta^{*} (p_{H,t}^{*})^{-\phi} y_{t}^{*} \]

Aggregate output

\[y_{H,t} \Delta_{H,t} + y_{H,t}^{*} \Delta_{H,t}^{*} = \varepsilon_{z,t} k_{t-1}^{\alpha} n_{t}^{1-\alpha} \]

GDP definition

\[y_{t} = y_{H,t} \Delta_{H,t} + y_{H,t}^{*} \Delta_{H,t}^{*} \]

Balance of payments

\[d_{t}^{*} = \Delta_{F,t} y_{F,t} - p_{H,t}^{*} y_{H,t}^{*} + \varepsilon_{t-1} R_{t-1}^{*} \frac{d_{t-1}^{*}}{\pi_{t}^{*}} \]

Price dispersion indexes

\[\Delta_{H,t} = \theta_{H} \left(\frac{p_{H,t}}{p_{H,t-1}} \right)^{\mu_{H}} \Delta_{H,t-1} \left(\frac{\pi}{\pi_{t}} \right)^{\mu_{\pi}} + (1 - \theta_{H}) \left(\frac{\tilde{p}_{H,t}}{p_{H,t}} \right)^{\mu_{H}} \]

\[\Delta_{H,t}^{*} = \theta_{H}^{*} \left(\frac{p_{H,t}^{*}}{p_{H,t-1}^{*}} \right)^{\mu_{H}} \Delta_{H,t-1}^{*} \left(\frac{\pi^{*}}{\pi_{t}^{*}} \right)^{\mu_{\pi}} + (1 - \theta_{H}^{*}) \left(\frac{\tilde{p}_{H,t}^{*}}{p_{H,t}^{*}} \right)^{\mu_{H}} \]

\[\Delta_{F,t} = \theta_{F} \left(\frac{p_{F,t}}{p_{F,t-1}} \right)^{\mu_{F}} \Delta_{F,t-1} \left(\frac{\pi}{\pi_{t}} \right)^{\mu_{\pi}} + (1 - \theta_{F}) \left(\frac{\tilde{p}_{F,t}}{p_{F,t}} \right)^{\mu_{H}} \]
Housing market

\[\chi_t = \omega I \chi_{I,t} + (1 - \omega I) \chi_{P,t} \]

Wage dispersion indexes (for \(i = \{I, P\} \))

\[\Delta_{w,i,t} = \theta_w \left(\frac{w_{i,t}}{w_{i,t-1}} \right)^{\frac{\mu_w}{\mu_w-1}(1+\sigma_n)} \Delta_{w,i,t-1} \left(\frac{\pi}{\pi_t} \right)^{\frac{\mu_w}{1-\mu_w}(1+\sigma_n)} + (1 - \theta_w) \left(\frac{\tilde{w}_{i,t}}{w_{i,t}} \right)^{\frac{\mu_w}{1-\mu_w}(1+\sigma_n)} \]