Lift-off Uncertainty: What Can We Infer From the FOMC’s Summary of Economic Projections?*

Tiago Berriel Carlos Carvalho Octavio Machado
PUC-Rio PUC-Rio PUC-Rio
February, 2015

Abstract

When the policy rate is constrained by the zero lower bound (ZLB), inference about central bank behavior becomes more difficult. As a result, despite possible efforts to counteract this effect through more active communication, policy uncertainty tends to increase. In particular, uncertainty about the degree of commitment becomes key. We use standard New Keynesian models subject to the ZLB to quantify the uncertainty around interest rate forecasts provided in the FOMC’s Summary of Economic Projections (SEP). The first step involves an assessment of the degree of Fed commitment to provide accommodation for extended periods of time. To that end, we calibrate versions of the models under different assumptions about the degree of policy commitment, and assess which specification provides the best fit to the so-called “SEP dots.” We then use the best-fitting specification to construct uncertainty bands around SEP interest rate forecasts, obtained by simulating policy responses to economic developments going forward. Our results suggest that the degree of Fed commitment to low rates for an extended period of time decreased since 2013. The reduction followed a change in FOMC forward guidance, and intensified as Quantitative Easing tapering took place. Quantitatively, our median projection indicates that lift-off will occur in 2015Q2, but there is some risk that rates will remain at zero until the end of 2016.

JEL classification codes:

Keywords: lift-off uncertainty, Summary of Economic Projections, zero lower bound, policy commitment

*We thank Gauti B. Eggertsson for sharing his Matlab codes and Matteo Iacoviello for insightful comments. We also thank seminar participants at LuBrMacro 2014 (Portuguese-Brazilian Macro Workshop), PUC-Rio and LACEA-LAMES 2014 for comments and suggestions. Any errors are ours. Emails: tberriel@econ.puc-rio.br, cvianac@econ.puc-rio.br, octavio.portolano@gmail.com.
“As policy normalizes, forward guidance will be less commitment-like and, hence, a less precise guide to our future actions than it has been in the recent past”. Jeremy C. Stein, Former Governor of the Federal Reserve Board.¹

“People should realize there is an uncertainty band around those forecasts of ours. Stanley Fischer, Vice-Chairman of the Federal Reserve Board.¹

1 Introduction

Economic theory suggests that the behavior of the economy can differ markedly depending on whether the central bank conducts policy in a discretionary fashion, or commits to a plan from which it would wish to deviate on occasion. In normal circumstances, joint observation of the evolution of the state of the economy and of policy decisions allows one to “check” if a previously specified state-contingent plan is being followed. Once the economy hits the interest rate zero lower bound (ZLB), however, inferring central bank behavior becomes both tougher and more important. In this situation, there is no reaction of the main monetary policy instrument to the state of the economy, which is stuck at zero. As a result, the central bank needs to resort to so-called unconventional policies: balance sheet actions, and more active communication (“forward guidance”). Theory suggests that promises to keep interest rates low after the economy recovers have stimulative effects today, through higher inflation expectations. However, time-consistency issues are key in this context. Krugman points out that this policy involves a commitment to inflate beyond the central bank’s “comfort zone”, promising low interest rates for a long period of time. Discretionary policy would react earlier to inflation developments and, thus, optimal policy under a credible commitment stimulates the economy more than a discretionary policy, despite the fact that they involve exactly the same interest rate in the initial periods of policy implementation - namely, zero. As a consequence inference about the degree of commitment becomes a key source of uncertainty about the future path of interest rates.

But how can we infer the degree of policy commitment when at the ZLB? In this paper we try to address this question by using information provided in the Fed’s Summary of Economic Projections (SEP). Since January 2012, the Fed has disclosed its members’ views on the future path of the target interest rate under appropriate monetary policy.² Figure 1 reproduces the SEP interest rate “forecasts”, released in June 2014. These forecasts – the so-called “SEP dots” – indicate individual participant’s judgment of the appropriate level of the target federal funds rate at various points in the future. SEP projections at each period consider one specific state of the economy. If, at a certain point in time, there was a fully state-contingent plan for interest rates going forward, one would be able to see if, over time, these projections remained in line with that state-contingent plan. Deviations from the path of future rates implied by an earlier state-contingent plan can thus be informative of whether the Fed has reoptimized every period, or followed some sort of “partial commitment”.

Using SEP information, we provide what we believe is a first assessment of the degree of Fed

²The SEP already contained information on participants’ forecasts of the unemployment rate, the change in real GDP, inflation and core inflation rate at different points in time, under appropriate monetary policy.
commitment at the ZLB. To that end, we rely on two DSGE models in which policy is subject to the zero lower bound to infer information about Fed behavior and quantify the uncertainty around SEP dots. First, we conduct the exercise using the standard New Keynesian model of Eggertsson and Woodford (2003). We then rely on the Smets and Wouters (2007) model (henceforth SW) to perform a more quantitative exercise. In each case, we first use SEP dots to extract information about Fed behavior, and then quantify the uncertainty around SEP dots going forward, under the assumption on Fed policy that best fits their own view of appropriate policy.

As a first step, for each SEP release, we calibrate versions of the models to obtain central interest rate forecasts under different assumptions about the degree of monetary policy commitment. We then assess which specification provides the best fit to the SEP dots for each release date. Then, conditional on the inferred policy behavior, we use the model to construct uncertainty bands around the latest SEP interest rate forecasts and obtain an estimate for the target rate lift-off. This way, we use the model, together with SEP data, to assess the degree of commitment of the Fed at the ZLB and, given this degree of commitment, to forecast the exit date of the ZLB.

SEP Interest rate forecasts exhibit considerable dispersion, indicating that the committee members have different opinions regarding the optimal timing of monetary policy. This might reflect differences in their assessment of the economic outlook – which are apparent in the SEP summary of participants’ forecasts of unemployment, GDP growth and inflation – and/or different views about what the appropriate monetary policy is. In this paper, we abstract from such differences of opinion and focus on modeling central moments of the SEP dots. We choose to simplify the problem and focus on central moments. In the end, future interest rate decisions will amount to a single number (or range) for the policy rate at any time in the future, and this
will be the outcome of some aggregation of the different views that participants might still hold about the appropriate policy rate for that point in time.

So how do we model the lift-off? Our experiment assumes that at some date \(t = 0 \) (which we take to be the fourth quarter of 2008 – 2008Q4) the economy is hit by a large shock, and the monetary authority responds by setting the target rate at zero. Every period, there is a constant probability that the shock will dissipate. This is the main source of uncertainty as to when interest rates will increase again.

In the standard New Keynesian model, there is only one shock – that affects the natural interest rate and, for practical purposes, acts as a discount factor shock. The SW model, on the other hand, displays several shocks. It is the shock on the wedge between the interest rate controlled by the Central Bank and the return on assets held by the households that will be our main focus. As Smets and Wouters (2007) argue, this wedge can be rationalized as some sort of financial friction in the economy. Therefore, we are basically dealing with a financial shock. It is this shock that will earn the constant probability structure.

Why do we use two models? In the standard New Keynesian, it is straightforward to characterize the commitment and discretion solutions. Nonetheless, because the model lacks endogenous state variables, the simulated trajectory – and mainly the uncertainty bands – for the interest rate are not very plausible. On the other hand, the Smets and Wouters (2007) model has several nominal and real rigidities which bring realism to the lift-off forecast. As for monetary policy, we have not characterized the optimal commitment and discretion solutions as this is a burdensome task when facing endogenous states and the zero lower bound. Instead, we rely on the alternative of proxying for monetary policy behavior in a reduced form way, via the interest-rate smoothing coefficient of the Taylor Rule.³ Basically, a higher interest-rate smoothing coefficient increases the time-dependence of the monetary policy rule, which is the main feature of monetary policy under commitment (Woodford 2009). Symmetrically, a small interest-smoothing coefficient implies little policy time-dependence, which is the essence of discretion.

In the standard New Keynesian model, we allow for three different types of policy behavior by the Federal Reserve: discretion, full commitment and “partial commitment”. The first type is the standard discretion case: it consists of solving the optimal policy problem every period, i.e the Central Bank is unable to commit to future policy. The second type is the standard commitment case: the Central Bank credibly commits, in 2008Q4, to a state-contingent plan for the target rate, which is followed forever. The third type – which we label “partial commitment” – assumes that at each date when the SEP is released, the FOMC re-optimizes and ties itself to a new commitment plan. However, both the Federal Reserve and the public do not know a priori that this re-optimization will occur. So, when the Summary of Economic Projections is made available, committee participants report a future path for the interest rate assuming full commitment from that date onwards. Under this scheme, the Fed reports a commitment trajectory, but its true behavior is quite discretionary: it reneges on the proposed commitment plan every time the FOMC participants are asked to report new forecasts for the target rate ⁴.

We run the model for each type of policy conduct and assess which one yields a simulated path

³See Nakov (2008), Woodford (2009), and Billi (2013).
⁴We do not mean this to be a proposal for a new way to model “imperfect commitment”.

4
for the nominal interest rate that best fits the median trajectory reported by the committee’s participants in the SEP. We perform such test in every date that these projections were released and establish if there have been changes to the FOMC behavior.

In the SW model, there is a continuum of commitment degrees, modeled by the interest rate smoothing coefficient of the Taylor Rule, which is restricted between zero and one. We solve and simulate the model using several values for this coefficient and find the one whose target rate path is closest to the reported median SEP dots. Again, we conduct the exercise for every SEP release date.

We find that, under the standard New Keynesian model, partial commitment is the behavior which best describes the average reported SEP dots for most dates. This means the Federal Reserve reports a commitment trajectory for the target rate when it releases the SEP projections. However, the FOMC always re-optimizes its optimal plan when a new SEP is made available. For the latest SEP (released in September 2014) the FOMC is appears that the FOMC is acting under discretion.

This is consistent with intermediary values for the interest rate smoothing coefficient as indicated by the SW model. In fact, the latter documents a clear reduction in the degree of commitment from December 2012 onwards. Such a reduction can be traced to changes in the FOMC statement. In particular, a move toward a state dependent language to express forward guidance precedes this decrease in policy commitment. The reduction intensifies in 2014, simultaneously to the tapering of the Quantitative Easing program.

Our simulations of the SW model imply that the lift-off associated with the median rate trajectory for the September 2014 SEP will be in 2015Q2. The uncertainty bands indicate the lift-off should take place between 2014Q4 and 2016Q4. Our median projection is somewhat more hawkish than what the market was anticipating in September 2014 (as measured by the Fed Funds Future curve). However, it is not as hawkish as the SEP dots, which are strangely very apart from the market. Nonetheless, the market’s expectation for the target rate path lies inside our simulated confidence intervals.

Overview of the Related Literature

Our paper fits in the literature seeking to characterize the Federal Reserve behavior in general, i.e., away from the ZLB. Since Taylor (1993) a vast number of papers were dedicated to the task of estimating a monetary policy rule that can account for the variations in the Federal Funds rate. There is also a large literature which focus on estimating the loss function – the preference parameters of the policy-maker. However, all these papers make an ad hoc assumption on the type of policy conduct pursued by the Federal Reserve: either a Taylor-type rule, commitment or discretion. Our analysis does not wish to make such assumption, rather, we are interested in inferring which kind of policy behavior best fits the projections of FOMC participants for the target interest rate.

Even though forward guidance is all about commitment, there is not much empirical evidence in favor of a strict-committing Federal Reserve. As McCallum (1999) points out “neither of

\footnote{See, for example, Clarida et al. (2000), Taylor (2012) and the references therein.}

\footnote{Examples are Favero and Rovelli (2003), Dennis (2004), Salemi (2006) and Ilbas (2012).}
these two models of central bank behavior—rule-like or discretionary—has as yet been firmly established as empirically relevant.”.

Givens (2012) asks a question that is similar to one of ours. He wishes to infer which kind of policy best fits US data: commitment or discretion. He uses a recent estimation technique on a simple New Keynesian model that allows him to jointly estimate the structural parameters of the economy as well as the monetary authority’s loss function parameters. The author separately estimates the model for the case of commitment as well as discretion. The estimation imposes the equilibrium restrictions for each type of policy behavior. He then compares moments of US quarterly data for the 1982–2008 period to the moments generated under both types of behavior to measure the fit of the models. He concludes that discretion does a better job in matching the observed data.

Finally, with respect to the lift-off, Bauer and Rudebusch (2013) is the paper which is closest to ours. Their goal is to obtain monetary policy expectations using the yield curve, explicitly taking into account the asymmetry of the zero lower bound. They show that standard affine term structure models are inconsistent with the ZLB and estimate an alternative model to take that into account. They characterize the whole probability distribution of the target rate in order to obtain interval forecasts for the lift-off, as we do. Their modal projection for the lift-off is September 2015, which is close to ours.

Our paper is novel in a few dimensions: to the best of our knowledge, this is the first paper which uses SEP data to infer policy behavior and lift-off uncertainty. The use of such data has a clear appeal: it directly reflects the opinion on those who vote for monetary policy decisions. Also, with respect to the policy behavior question, we are interested in characterizing the future behavior of the Fed, i.e., we wish to understand how the FOMC will conduct monetary policy once it decides to increase rates. Finally, the existing literature that tries to distinguish commitment from discretion has focused on the pre-crisis period. We, on the other hand, wish to conduct the test precisely in the post-crisis period.

This paper proceed as follows. Section 2 briefly outlines both models and explains how we characterize optimal monetary policy. Section 3 details our methodology, by discussing how we model the lift-off, and presenting the technical solutions and filtering procedures. Section 4 discusses the results from our policy conduct test and the assessment of the lift-off uncertainty, for the standard New Keynesian model, while Section 5 displays results for the Smets and Wouters (2007) model. Finally, Section 6 concludes.

2 Models and Monetary Policy

In this section, we describe both models and how we characterize monetary policy.

2.1 The Standard New Keynesian Model

The first model we use, is a textbook New Keynesian model subject to the zero lower bound. This closely follows Eggertsson and Woodford (2003). The representative household chooses consumption, leisure, money and bond holdings to maximizes its additively separable utility function subject to a budget constraint. Firms operate under monopolistic competition
and prices are sticky following Calvo (1983). There is a lower bound for the nominal interest rate, which arises from the household’s money demand function. There are no real frictions. The only rigidity is on nominal prices.

For convenience, we skip the derivation of the model and present the familiar log-linearized equations that we need: the inter-temporal IS curve and the New Keynesian Phillips Curve (NKPC). The reader can refer to Eggertsson and Woodford (2003) and Woodford (2003) for the complete derivation.

The inter-temporal IS curve and the New Keynesian Phillips Curve are given by:

\[x_t = E_t x_{t+1} - \sigma (r_t - E_t \pi_{t+1} - r^n_t) \]
\[\pi_t = \kappa x_t + \beta E_t \pi_{t+1} \]

where, \(x_t \) is the output gap: the percentage deviation of output from its natural (flexible prices) counterpart; \(\pi_t \) is the inflation rate; \(r_t \) is the (nominal) target interest rate, controlled by the Federal Reserve; and \(r^n_t \) is the natural interest rate: the real rate of interest that prevails in equilibrium when \(x_t = 0 \); \(\sigma \) is the inter-temporal elasticity of substitution of consumption; \(\kappa \) is a positive parameter describing how inflation responds to variations in the current output gap; and \(\beta \) is the discount factor.

Equations (1) and (2) show that the only exogenous shock to the system comes from the natural rate of interest. In what follows, we will assume that such rate of interest is completely exogenous. In practical terms, a shock to the natural rate can be rationalized as a discount factor shock, since the steady-state level of this rate is \(1/\beta \).

2.2 The Optimal Monetary Policy Problem in the Standard New Keynesian Model

Now that we have characterized the system of equations, we can set up the optimal policy problem. We do this in a linear quadratic framework, following Eggertsson and Woodford (2003). There are, traditionally, two possible policy extremes: full commitment and discretion. We will also model an intermediate case, which we label partial commitment. Under full commitment, the Federal Reserve ties itself to a plan in 2008Q4. The SEP dots reported under full commitment would be future values for the target rate under this very same contingent plan. Under partial commitment, however, the Fed changes its optimal plan every date when the SEP is released. Hence, the dots reported in June 2012 do not reflect the same plan as the dots in June 2013. But, conditional on the state of the economy, the solution for any given period after optimization is the same for partial or full commitment.

Therefore, the solution for partial commitment is the same as full commitment. The only difference is the optimization date.

The optimal problem consists of minimizing the following loss function:

\[(x_t - y_t) (x_t - y^n_t)^T \]

\[^7\]If we define \(y_t \) as actual output, and \(y^n_t \) as natural output, then, \(x_t = y_t - y^n_t \).
subject to (1), (2) and a non-negativity constraint on the nominal interest rate, \(r_t \geq 0 \). The parameter \(\lambda = \kappa / \beta \) represents the relative weight given by the Federal Reserve to output stabilization *vis-a-vis* price stabilization. The introduction of the zero lower bound condition makes the problem somewhat more complicated to solve. Jung et al. (2005) were the first to tackle this issue.

Discretion

Under discretion, the Central Bank is unable to commit to future policy and re-optimizes every period. It therefore chooses \(\pi_t \) and \(x_t \) at each point in time. As shown in Jung et al. (2005) the first order conditions are respectively given by:

\[
\pi_t + \varphi_{2t} = 0 \tag{4}
\]
\[
\lambda x_t + \varphi_{1t} - \kappa \varphi_{2t} = 0 \tag{5}
\]
\[
r_t \varphi_{1t} = 0 \tag{6}
\]
\[
r_t \geq 0 \tag{7}
\]
\[
\varphi_{1t} \geq 0 \tag{8}
\]

Equations (6), (7) and (8) are the Kuhn-Tucker conditions regarding the non-negativity constraint of the target interest rate. \(\varphi_{1t} \) and \(\varphi_{2t} \) are the Lagrange multipliers.

Full and Partial Commitment

In the case of commitment (both full and partial), the Central Bank solves the problem by choosing the entire sequence \(\{ \pi_t, x_t \}_{t=0}^\infty \). It commits to a state contingent plan and sticks to it. The first order conditions, as shown by the authors, are:

\[
\pi_t - \beta^{-1} \sigma \varphi_{1t-1} + \varphi_{2t} - \varphi_{2t-1} = 0 \tag{9}
\]
\[
\lambda x_t + \varphi_{1t} - \beta^{-1} \varphi_{1t-1} - \kappa \varphi_{2t} = 0 \tag{10}
\]

The optimality conditions show that the commitment solution is history dependent whereas the discretion solution is not. This is important, because, as Eggertsson and Woodford (2003) show, the optimal commitment policy prescribes that the policy-maker should promise to generate a positive output gap and inflation in the future (once the shock is over). This, in turn, means that the target interest rate should be held at the zero lower bound for an extended period after the shock has left the system. Such compromise will create positive inflation expectations, lowering the real rate of return and stimulating aggregate demand when the economy is still

8Once again, the difference between full and partial commitment is the time period which we choose to set \(t = 0 \). It is 2008Q4 under full commitment, and it varies with the SEP release date under partial commitment.
in the liquidity trap. That is, the central bank exchanges more inflation in the future for less deflation when the shock hits, improving the output-inflation trade-off. This is not true under discretion, in which case optimal policy requires the policy-maker to raise interest rates as soon as the shock has vanished.

2.3 The Smets and Wouters (2007) model

The Smets and Wouters (2007) model is a workhorse medium-sized DSGE model for the US economy. It includes both nominal and real rigidities. Our goal here is to summarize the model, and describe the main equations. There are four agents in this economy: households, firms, a fiscal authority and the Central Bank. We present the first three and leave the latter for the monetary policy discussion.

Households maximize their utility function that depends both on consumption (with habit formation) and labor. Households can rent capital services to firms and decide how much capital to accumulate. Capital accumulation is subject to adjustment costs, and capital utilization is variable. Households consume a basket of differentiated goods produced by the firms, which are aggregated using the Kimball (1995) aggregation, allowing for time-varying demand elasticity. Households can also buy bonds that yield a return rate \(r^b \) which is different from the target interest rate controlled by the Central Bank \(r \).

There is, therefore, a wedge between these two interest rates. As Smets and Wouters (2007) argue in their appendix, this wedge can be rationalized as a financial friction of some sort, and a shock to this wedge can be either interpreted as a risk premium shock or a financial shock. For our purposes, we will stick to the latter interpretation.

The households equilibrium relations are given by the Euler consumption equation (11); the Euler investment equation (12); and an arbitrage condition for the value of capital (13). All variables are log-linearized around their balanced growth steady-state:

\begin{align*}
 c_t &= c_1 c_{t-1} + (1 - c_1) E_t c_{t+1} + c_2 (l_t - E_t l_{t+1}) - c_3 \left(r_t - E_t \pi_{t+1} + \varepsilon^b_t \right) \\
 i_t &= i_1 i_{t-1} + (1 - i_1) E_t i_{t+1} + i_2 q_t + \varepsilon^i_t \\
 q_t &= q_1 E_t q_{t+1} + (1 - q_1) E_t r^k_{t+1} - \left(r_t - E_t \pi_{t+1} + \varepsilon^b_t \right)
\end{align*}

where, \(c_t \) is consumption; \(l_t \) is the number of hours worked; \(r_t \) is the nominal target rate; \(\pi_t \) is the inflation rate; \(i_t \) is investment; \(q_t \) is the real value of capital stock; \(r^k_t \) is the real rental rate on capital. Finally, \(\varepsilon^b_t \) is the financial friction (or interest rate wedge / risk premium); and \(\varepsilon^i_t \) represents a disturbance to the investment-specific technology process. These two frictions are modeled as AR(1) processes with normal IID disturbances:

\begin{align*}
 \varepsilon^b_t &= \rho_b \varepsilon^b_{t-1} + \eta^b_t \\
 \varepsilon^i_t &= \rho_i \varepsilon^i_{t-1} + \eta^i_t
\end{align*}

Our financial shock is given by the term \(\eta^b_t \).
Firms operate under monopolistic competition, producing differentiated goods. Their production technology features labor-augmenting productivity and fixed costs. They borrow capital and labor services from households. Prices and wages are sticky and are set à la Calvo (1983). Prices and/or wages that are not re-optimized in a given period are partially indexed to past inflation.

The supply-side equilibrium relations are given by the aggregate production function (16); the law of motion of installed capital (17); the price-markup equation (18); the New Keynesian Phillips Curve (19); the wage-markup equation (20); the wage Phillips Curve (21); the relations between capital services and installed capital (22) - (23); and a cost minimization equation (24).

\[y_t = \phi_p (\alpha k_t + (1 - \alpha) l_t + \varepsilon_t^a) \]

\[k_t = k_{1t} + (1 - k_1) i_t + k_2 \varepsilon_t^i \]

\[\mu_t^p = \alpha (k_t - l_t) + \varepsilon_t^p - w_t \]

\[\pi_t = \pi_1 \pi_{t-1} + \pi_2 E_\pi_{t+1} - \pi_3 \mu_t^p + \varepsilon_t^p \]

\[\mu_t^w = w_t - (\sigma_1 l_t + \lambda_1 (c_t - \lambda_2 c_{t-1})) \]

\[w_t = w_1 w_{t-1} + (1 - w_1) (E_w w_{t+1} + E_w \pi_{t+1} - w_2 \pi_t + w_3 \pi_{t-1} - w_4 \mu_t^w + \varepsilon_t^w) \]

\[k_t = k_{t-1} + z_t \]

\[z_t = z_{t+1} \]

\[\epsilon_t = -(k_t - l_t) + w_t \]

where, \(y_t \) is output; \(k_t^a \) is capital services; \(k_t \) is installed capital; \(z_t \) is the degree of capital utilization; \(\mu_t^p \) is the price markup; \(\mu_t^w \) is the wage markup; \(w_t \) is the wage rate; \(\varepsilon_t^a \) is total factor productivity, which is modeled as an AR(1), see (25); \(\varepsilon_t^p \) is a price markup disturbance; and \(\varepsilon_t^w \) is a wage markup disturbance; These last two are assumed to follow ARMA(1,1) processes, see (26) - (27).

\[\varepsilon_t^a = \rho_a \varepsilon_{t-1}^a + \eta_t^a \]

\[\varepsilon_t^p = \rho_p \varepsilon_{t-1}^p + \eta_t^p - \mu_p \nu_{t-1} \]

\[\varepsilon_t^w = \rho_w \varepsilon_{t-1}^w + \eta_t^w - \mu_w \nu_{t-1} \]

There is also an aggregate resource constraint (28), given by:

\[y_t = c_y c_t + i_y i_t + z_y z_t + \varepsilon_t^g \]

where, \(\varepsilon_t^g \) is the exogenous government spending term, which follows an AR(1) with a normal IID innovation (29).

\[\varepsilon_t^g = \rho_g \varepsilon_{t-1}^g + \eta_t^g \]
2.4 Monetary Policy in the Smets and Wouters (2007) model

While the SW model is more realistic because of its frictions and endogenous states, this realism does not come without cost. Solving for the optimal discretion and commitment policies in this model is not straightforward. The interaction of the endogenous states with the zero lower bound (which, in turn, affects current expectations) renders the task herculean. In this paper, we provide an alternative solution which we believe has a powerful insight. Therefore, although we do not characterize the actual discretion and commitment solutions, our procedure enables us to assert if the time dependence of monetary policy has changed.

As in the SW model, we assume monetary policy is given by the following Taylor Rule:

\[r_t = \rho r_{t-1} + (1 - \rho) \left[\phi \pi_t + \phi_y (y_t - y^p_t) \right] + \phi_{\Delta y} \left[(y_t - y^p_t) - (y_{t-1} - y^p_{t-1}) \right] + \varepsilon^r_t \] (30)

where, \(\varepsilon^r_t \) is a monetary policy shock, that follows an AR(1) process; and \(y^p_t \) is potential output.

Equation (30) implies that the Central Bank gradually adjusts the target rate \((r_t) \) in response to inflation and the output gap. The last term represents a feedback response from changes in the output gap.

The parameter \(\rho \in [0, 1) \) represents the interest rate smoothing coefficient. It also governs the inertia or time-dependence of monetary policy. If \(\rho \) is close to 1, the Taylor Rule is very time-dependent, as future movements of the target rate are strongly correlated with the the lagged state of the economy (collected in \(r_{t-1} \)). We also know that commitment exhibits far more time-dependence than discretion. The latter, in fact, is not a time dependent policy, as the Central Bank is assumed to re-optimize every period. Therefore, it seems somewhat intuitive that if the interest rate smoothing coefficient is close to one, the rule given by (30) will implement a solution that is close (or at least closer) to commitment. Symmetrically, if \(\rho \approx 0 \), the Taylor rule would be more coherent with discretion.

Our argument is supported by some results available in the literature. Woodford (1999) shows that optimal commitment policy displays intrinsic inertia in interest-rates responses, in a standard New Keynesian model without the zero lower bound. He also demonstrates that a Taylor Rule with a high enough interest rate smoothing coefficient can implement a solution that is close to the optimal commitment\(^9\).

In a more similar context to ours, Nakov (2008) studies which simple policy rule best replicates the optimal commitment policy in a standard New Keynesian model with the zero lower bound. He finds that when there is a liquidity trap possibility, a Taylor Rule that controls the first-difference of the target rate (which is equivalent to an unitary smoothing coefficient) is the one which best replicates the outcome under commitment.

In a recent working paper, Billi (2013) argues that \(\rho = 1 \) is an indication that the Central Bank gives forward-guidance on the target rate level and, if this is the case, inflation is more

\(^9\) In the setup of Woodford (1999), the smoothing coefficient should be greater than 1. He calls this a super-inertial policy.
tightly anchored.

On the empirical side, Givens (2012) reports that under discretion, interest-rate smoothing is the most important objective in the Federal Reserve’s loss function, whereas under discretion, it is the least important.

These results gives us confidence that modeling the types of monetary policy using this “reduced-form” does not affect the intuition of our results.

3 Solution and Simulation

In this section we describe the solution method we use for DSGE models with inequality constraints. Then, we explain the filtering problem associated with the SW model. Finally, we explain how we model the exit from the ZLB and discuss calibration.

3.1 Solution Method

The model cannot be solved using standard perturbation methods, because of the non-linearity introduced by the zero lower bound. We use a piecewise linear solution method for both models. This method was first proposed in Jung et al. (2005) for a deterministic context. Eggertsson and Woodford (2003) generalized the algorithm for a stochastic context in which the natural interest rate can only take two values, and one is an absorbing state. Finally, Guerrieri and Iacoviello (2014) extended the solution method for general processes, and developed a toolkit that implements the codes in Dynare: OccBin. We use this toolkit in our paper.

The intuition of the solution method is to combine the impulse response functions of two different regimes: one regime in which the constraint is never binding (32) and one in which the constraint is always binding, equation (33):

\[A \varepsilon_{t+1} + B X_t + C X_{t-1} + \varepsilon_t = 0 \]
\[A^* \varepsilon_{t+1} + B^* X_t + C^* X_{t-1} + D^* + \varepsilon^*_t = 0 \]

where, \(X_t \) is a vector of endogenous variables, \(\varepsilon_t \) is a vector of shocks and \(D^* \) is a vector which arises because linearization is carried out around the steady-state of (32).

Given an initial condition \(X_0 \) and the realization of a shock \(\varepsilon_1 \), the algorithm is based on a simple guess-and-verify approach. First, guess that regime (33) starts in \(\tau_1 \) and ends in \(\tau_2 \). Then, assuming (32) satisfies the Blanchard and Kahn (1980) conditions, the solution for \(t > \tau_2 \) is given by:

\[X_t = P X_{t-1} + Q \varepsilon_t \]

Now, assuming no other shocks are expected, we know from (34) that \(E_{\tau_2} X_{\tau_2+1} = P X_{\tau_2} \). Substitute this into (33) to obtain, for \(\tau_2 \):

\[A^* P X_{\tau_2} + B^* X_{\tau_2} + C^* X_{\tau_2-1} + D^* = 0 \]
After re-arranging we obtain the decision rule for X_{τ_2} given X_{τ_2-1}:

$$X_{\tau_2} = P_{\tau_2}X_{\tau_2-1} + R_{\tau_2}$$ (35)

where, $P_{\tau_2} = -(A^*P + B^*)^{-1}C^* \text{ and } R_{\tau_2} = -(A^*P + B^*)^{-1}D^*$.

Iterate backwards in the same fashion until X_0 is reached, applying regime (33) for $\tau_1 < t < \tau_2$ and regime (32) for $t < \tau_1$. For period $t = 1$, the solution will have the form:

$$X_1 = P_1X_0 + R_1 + Q_1\varepsilon_1$$ (36)

where, $Q_1 = -(A^*P_2 + B^*)^{-1}E$. After that, the path for X_t can be simulated and the guess for the regime durations can be verified.

The most striking advantage of the piecewise linear solution method is its computational speed. Since it is basically an interpolation of impulse response functions solved using perturbation methods, it is much faster than global solution methods, which suffer from the curse of dimensionality. Also, the solution using the piecewise method can be highly non-linear. The dynamics may be affected by how long the constraint is expected to be binding. Thus, one should be cautious not to think that this solution method is just linear, with different coefficients applying to each regime.

3.2 Filtering the State of the Economy

The SW model features endogenous states. In terms of the solution method described earlier, the SW model requires knowledge of the state of the economy to form the initial vector X_0. We also need information about the vector of shocks, when solving the model.

As a result, we need a filtering algorithm to obtain this information. Generally, we can write the solution of the model as:

$$X_t = P(X_{t-1}, \varepsilon_t)X_{t-1} + D(X_{t-1}, \varepsilon_t) + Q(X_{t-1}, \varepsilon_t)\varepsilon_t$$ (37)

If we have a vector of observed time-series Y_t, we know there is a selection matrix H so that: $Y_t =HX_t$. Therefore, (37) can be expressed as:

$$Y_t = HP(X_{t-1}, \varepsilon_t)X_{t-1} + HD(X_{t-1}, \varepsilon_t) + HQ(X_{t-1}, \varepsilon_t)\varepsilon_t$$ (38)

Equation (38) is equivalent to a state-space representation of linear models. It means we can recursively solve for ε_t given the last state X_{t-1} and current data Y_t. However, since the coefficients on the solution form (37) - (38) have endogenous variations (ie, they depend on ε_t and X_{t-1}) we cannot use the Kalman Filter.

Instead we use an algorithm inspired by Guerrieri and Iacoviello (2013). The intuition is as follows: given an initialization for the state vector X_0, search for the vector of shocks that minimizes the distance between simulated and observed data in period $t = 1$. Then, using the filtered state X_f^1, repeat the exercise for $t = 2$, and so on. A complete description of the algorithm is given below:

1. Given an initial value for the state vector X_0, guess a vector of shocks ε_1 (Guess 1):
2. Guess a duration for the zero lower bound (Guess 2);

3. Using Guess 1 and Guess 2, solve the model and simulate the trajectory for the filtered endogenous variables, X_f^1;

4. Construct a simulated vector of observables: $Y_f^1 = HX_f^1$;

5. Verify the duration of the ZLB (Guess 1). If necessary, return to (2);

6. Verify if the distance between the simulated data (Y_f^1) and real data (Y_1) is small enough. If not, return to (1);

7. Repeat for all t.

In the SW model, the vector of data Y_t is composed of seven variables: log difference of real GDP; real consumption; real investment; log difference of the GDP deflator; real wage; log of hours worked; and the federal funds rate. The data are collected from the same sources as Smets and Wouters (2007) and are treated as described in their appendix. All data are quarterly and the sample is 1985Q1 to 2014Q2, consisting of 118 observations. We use the first 25 observations as a training sample (1985Q1 - 1991Q1).

The filtering problem is not a concern when dealing with the standard New Keynesian model. Because of the forward looking nature of the model there are no endogenous states. Therefore, we can solve for 2008Q4 onwards assuming that the economy was at the steady-state before the shock.

3.3 Modeling the exit from the Zero Lower Bound

Solving the model with the OccBin toolkit requires a sequence of shocks as an input. Therefore, we need to assign some kind of stochastic process to model the exit from the zero lower bound. We assume the financial shock (or the discount factor shock in the case of the basic New Keynesian model) has a constant probability of exiting the economy every period. Now, we describe this experiment used to compute the path for the target interest rate in some detail. We follow closely Eggertsson and Woodford (2003).

The standard New Keynesian model

We assume that at date t_0 the economy is hit by a shock which makes the natural interest rate suddenly negative ($r^n_t = r_L < 0$). This shock has a constant probability γ of disappearing every period. Once the shock is gone, the natural interest rate reverts back to its steady state level and there it stays ($r^n_t = r_H > 0$). The natural rate, therefore, can take only two values, and its steady state is an absorbing one. The date τ at which the shock is over is a random variable.

As shown in Eggertsson and Woodford (2003), optimal policy prescribes that the target rate should be kept at the zero lower bound for an additional number of periods – k – even after the shock is not present (in the case of discretion, $k = 0$). Therefore, there will be a period of time when the economy will not be affected by the shock, but interest rates will still be zero10.

10Formally, we define k as the smallest integer such that at time $\tau + k + 1$ the target rate is greater than zero.
Thus, the experiment can be thought of as having three stages: in the first stage, the shock is present and the zero lower bound is binding ($t_0 \leq t < \tau$); in the second stage the shock is absent but the zero bound is still active ($\tau \leq t \leq \tau + k$); and in the third stage, the shock is absent and the target interest rate is positive ($t > \tau + k$). This should not be confused with the two regimes described in section 3.1. Regime (33) applies to stages 1 and 2, whereas regime (32) applies to stage 3.

How can we use this experiment to test if the Federal Reserve members are forecasting the target rates with discretionary, fully committed, or partially committed policies in mind? And how do we use the simulations to assess the lift-off uncertainty? Suppose we are interested in analyzing the FOMC behavior in period T, a date in which the target rate projections in the SEP are released. We need to compute, for each of the three possible behaviors, the future path of the fed funds rate from T onwards.

For a given policy behavior, we solve the model for a number of different contingencies, each of which representing a particular history for the shock process. These histories are indexed by the period in which the shock is undone: the j-th contingency, corresponds to the case in which the discount factor shock reverses in the j-th period. Given the stochastic nature of the shock process, the probability of observing such a history is $\gamma(1-\gamma)^{j-1}$.

Therefore, for a given time period, we obtain the whole probability distribution of the target rate. So, after solving the model for several shock contingencies, we compute the weighted average for all variables in every time period.

Why do we aggregate contingencies using a weighted average and not the median or mode? Because of the stylized nature of the basic New Keynesian model, the optimal policy recommendation is to increase the target rate to the steady-state value all at once, when lift-off begins. Therefore, the target rate almost always takes on only two values: zero and the steady-state level. If we used the median or mode, the simulated trajectory would preserve this feature, which is definitely different from the SEP dots. By using the weighted-average we can obtain a more smooth trajectory. For the SW model, the smoothness arises endogenously from the model, so we can aggregate the trajectories using the median11.

Each period is taken to be a quarter. The date t_0, when the shock first appears, corresponds to the fourth quarter of 2008 (2008Q4). In date T, when the SEP projections are released, there are some simulated contingencies for which the shock has already reversed to its normal value, and in such contingencies optimal policy may prescribe a positive value for the nominal interest rate. We know, however, that the zero lower bound is still binding in T, as the FOMC has not yet increased the fed funds rate. Therefore, in the weighted average calculations, we exclude all the contingencies for which the natural rate has returned to its steady state level prior to T.

Having computed the future path of the target rate for all three possible behaviors, we compare each one of them with the median SEP dots, released in date T. We calculate the euclidean distance between the simulated path and the FOMC median projection for every future quarter in which a projection exists. The simulated path with the minimum sum of distances to the real SEP data is the one which best describes the committee’s policy conduct at date T. We repeat this exercise for all dates when the SEP was released, to check if there

11Results for the NK model using the median, and for the SW model using the average are available from the authors upon request.
have been changes in the FOMC behavior through time.

Once we have established the most likely policy conduct by the FOMC, we can quantify the uncertainty with respect to the timing of the fed funds rate lift-off. Since we do not have only a central moment of the target rate, but rather the whole probability distribution, we can look at percentiles to assess uncertainty.

The Smets and Wouters (2007) model

The procedure for the SW model is similar. However, as described earlier we model monetary policy differently. We also need to filter the state of the economy before solving the model. Here we outline the basic scheme.

For a given SEP, we filter the state of the economy up to the projections release date. Then, we search for the optimal smoothing coefficient of the Taylor Rule by solving and simulating our model repeatedly, for all ρ values in a grid between 0 and 1 with size 0.01.

For a given smoothing coefficient, we simulate from the SEP date T onwards, drawing several contingencies for the financial shock history. Our baseline specification uses the same stochastic structure as the discount factor shock in the standard New Keynesian model (ie, the shock has a probability γ of exiting the economy in a given period). Therefore, for a given time period we characterize the probability distribution of the target rate.

Then, we aggregate all simulations by the median, and compute the distance between the median simulated target rate path and the median reported SEP dots. We repeat this exercise for all values that the smoothing coefficient can take in the grid. The one which yields the closest simulated trajectory to the SEP dots is the “true” coefficient of the Taylor Rule for that SEP date. The value of the smoothing parameter, in turn, indicates the degree of time-dependence or inertia of monetary policy.

Once we have characterized the policy behavior by the FOMC, we can quantify the uncertainty surrounding the lift-off timing. Similar to the standard New Keynesian model, we compute the 10th and 90th percentiles of the simulated probability distribution for the target rate under the optimal smoothing coefficient.

Different from the standard New Keynesian, the SW model has seven shocks. The stochastic structure attributed to the financial shock is not shared by the other shocks. There are, however, a few possibilities to model these other innovations. Our preferred specification is to allow all other innovations to be drawn from an IID normal distribution with zero mean and constant variance. We calibrate the variance according to the estimation in Smets and Wouters (2007).

12 turn them all off, and focus on the financial shock alone. We proceed this way because taking into account the uncertainty of all seven shocks implies unrealistic results regarding the target rate lift-off. In the end, we are mostly concerned with the effects of the 2008 crisis on the duration of the zero lower bound, which is modeled using the financial shock.

We also experiment with different set-ups. We consider the case where the only shock in the SW model is the financial one. This allows us to assess the impact of the financial friction directly. The shock structure is the same as in our baseline specification. Results for this set-up are displayed in the Appendix.

12This is further discussed in section 5.2.
Importantly, when we use the filtering algorithm described in section 3.2, we obtain shocks that are correlated with each other and through time. This potentially points out a specification error in our model. To mitigate this, we also conduct the simulations after drawing all other innovations from a parsimonious VAR model estimated using the filtered shocks. The stochastic process for the financial shock is maintained. Results are available in the Appendix.

3.4 Why aggregate Dots using the median?

At this point, a natural question is why do we aggregate the SEP dots using the median? As mentioned in the Introduction, the differences of opinion between FOMC members compels us to aggregate the dots in some way.

The important point is that we do not know how voting takes place during FOMC meetings. If the FOMC were a pure democracy with secret voting, then the most likely outcome of policy tightening would be the opinion of the median member. However, we do not know if this is true. It could be the case that members wait until some sort of “supermajority” is convinced and then voting is almost unanimous. This would require looking at a lower percentile of the distribution. Alternatively, if a few FOMC members (such as Janet Yellen) steer the decision and the rest follows along, then we should only focus on the dots of these “driver-members”.

Since we are not sure if members follow Yellen (and, of course, we are ignorant about which dots are Yellen’s) or even if they wait for a supermajority, we believe looking at the median is the best we can do without resorting to some ad hoc assumption about the FOMC behavior.

3.5 Calibration

In this section, we discuss each model’s calibration. The SW model has approximately 60 parameters, so we refrain from showing the calibrated values for all of them. The interested reader can refer to the original paper. We only highlight the minor alterations we have made.

The Standard New Keynesian Model

We use standard values available in the literature. We assume a unitary elasticity of inter-temporal substitution13, a discount factor of $\beta = 0.995$ and an elasticity of substitution of $\theta = 7.88$, following Rotemberg and Woodford (1997). Table 1 displays the calibrated parameters. We assume a steady-state level of inflation equal to 2% a year. Since the model has quarterly frequency, the discount factor of 0.995 and the long-run inflation imply that the steady state value of the natural interest rate is 4% a year.

To calibrate the values of the NKPC parameter κ and the magnitude of the shock hitting the economy r_L, we run the model and try to find a combination of these two parameters that produce a path for inflation and the output gap that are consistent with US data for the year 2009. The year over year change in CPI was -0.4% and the output gap as a percentage of real gross domestic product was -7.15%. We find that the combination $\kappa = 0.01$ and $r_L = -4.75\%$ does a good job in replicating the data.

13See, for example, Chari et al. (2000).
Table 1: Calibration of Structural Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Factor β</td>
<td>0.995</td>
<td>SS level of target rate</td>
</tr>
<tr>
<td>Intertemp. Elasticity of Subst. σ</td>
<td>1.00</td>
<td>Literature</td>
</tr>
<tr>
<td>Goods Elasticity of Subst. θ</td>
<td>7.88</td>
<td>Literature</td>
</tr>
<tr>
<td>Response of Inflation to Gap κ</td>
<td>0.01</td>
<td>Inflation rate and output gap</td>
</tr>
<tr>
<td>Magnitude of shock r_L</td>
<td>-4.75%</td>
<td>for the US in 2009</td>
</tr>
<tr>
<td>Prob of Shock Reversal γ</td>
<td>Appendix A</td>
<td>Quarters from SEP until lift-off</td>
</tr>
</tbody>
</table>

To obtain a value for the probability γ, we look at the number of quarter from the SEP release-date until the target rate lift-off as implied by committee members’ opinions. We know, however that the shock’s exit probability is not the same as the lift-off probability, because of the endogenous monetary policy delay that arises under commitment.

To deal with this problem, we need to find a probability γ that will deliver an endogenous delay such that we observe the same lift-off as the one implied by SEP data. This fine tuning is not a difficult task. Basically, we start with an initial guess for the exit probability (based on the lift-off duration in the data) and search for values in the neighborhood of this starting point until we match the observed lift-off date. Since the description is somewhat cumbersome, we leave the details to the Appendix.

It is important to stress that this probability changes according to the SEP date and also according to which type of policy behavior we are assuming.

The Smets and Wouters (2007) model

We calibrate the SW model using the mode of the estimated posterior distribution for most of the parameters. However, the estimation conducted in Smets and Wouters (2007) imply some unreasonable values for the steady-state. In particular, steady-state inflation, output growth and nominal interest rates are 3.24%, 1.72% and 6.30%, respectively.

Two parameters govern steady-state inflation and output growth directly, so we alter these to obtain 2% and 1.5%. These numbers are more aligned with FOMC members projections available in the SEP. Also, the long-run value for the target rate is approximately 4%, as reported by members. The steady-state level of the interest rate is influenced by the discount factor (β), the inter-temporal elasticity of consumption substitution (σ_c), and the steady-state level of inflation and output growth.

We calibrate the discount factor to $\beta = 0.9992$ and the inter-temporal elasticity to $\sigma_c = 1.16$. The estimated values were 0.9984 and 1.39, respectively. However, our calibrated values are above the 5-th percentile of the estimated posterior distribution, as reported in Smets and Wouters (2007). These values, together with the calibration for the steady-state inflation and output growth, imply that the long-run level of the nominal interest rate is approximately 4.08%.

The magnitude of the financial innovation is the average of the filtered financial shock from 2008Q4 until the appropriate SEP release date. As for the other shocks, when assuming that they are drawn from a normal distribution with zero mean and constant variance, we use the estimated standard deviation available in Smets and Wouters (2007).

As for the exit probability γ, under the SW model, it would be impossible to fine tune that
probability as described earlier, since we are also simultaneously conducting a grid search for the optimal smoothing coefficient. Therefore, for the SW model we will simply use the starting point probability for which we conduct our fine tuning under the New Keynesian model (for details as how to obtain this initial guess, refer to Appendix A).

4 Results for the standard New Keynesian model

4.1 How has the FOMC been conducting monetary policy?

In this section we answer our first question: are the reported SEP dots better described by a discretionary or a committed Federal Reserve? Here we consider only the standard New Keynesian model.

Table 2 presents the sum of distances between the average reported target rate trajectories and the (weighted average of) simulated ones, organized by type of behavior and release date.

<table>
<thead>
<tr>
<th>Date of Projection Release</th>
<th>Discretion</th>
<th>Full Commitment</th>
<th>Partial Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>5.13</td>
<td>0.13*</td>
<td>0.13*</td>
</tr>
<tr>
<td>April 2012</td>
<td>4.81</td>
<td>0.31</td>
<td>0.13*</td>
</tr>
<tr>
<td>June 2012</td>
<td>5.56</td>
<td>0.06</td>
<td>0.00*</td>
</tr>
<tr>
<td>September 2012</td>
<td>4.25</td>
<td>0.25</td>
<td>0.06*</td>
</tr>
<tr>
<td>December 2012</td>
<td>4.81</td>
<td>0.56</td>
<td>0.25*</td>
</tr>
<tr>
<td>March 2013</td>
<td>5.06</td>
<td>0.25*</td>
<td>0.25*</td>
</tr>
<tr>
<td>June 2013</td>
<td>4.75</td>
<td>0.25</td>
<td>0.06*</td>
</tr>
<tr>
<td>September 2013</td>
<td>3.75</td>
<td>1.06</td>
<td>0.06*</td>
</tr>
<tr>
<td>December 2013</td>
<td>4.38</td>
<td>2.50</td>
<td>1.81*</td>
</tr>
<tr>
<td>March 2014</td>
<td>4.38</td>
<td>3.31</td>
<td>1.63*</td>
</tr>
<tr>
<td>June 2014</td>
<td>3.19</td>
<td>2.88</td>
<td>1.31*</td>
</tr>
<tr>
<td>September 2014</td>
<td>2.19*</td>
<td>6.56</td>
<td>2.31</td>
</tr>
</tbody>
</table>

* indicates the behavior which best fits the reported target rate trajectory in the specified release date.

According to Table 2, the policy that best describes the SEP dots for most dates is partial commitment. Note that there is a tie between full and partial commitment only in January 2012 and March 2013. This means that the Federal Reserve re-optimizes its optimal commitment plan every time it releases new projections for the target rate. Since the FOMC is constantly changing the state contingent plan, its true behavior is quite discretionary.

Also, for September 2014 the policy behavior to best match the reported SEP dots is, in fact, discretion. Note, however, that the computed distance for the September 2014 is considerably greater than for the other dates. Nonetheless, the main suggestion in Table 2 is that the degree of commitment by the Fed is decreasing.

For illustration purposes, Figures 2 and 3 depict the optimal simulated paths for the target rate alongside the FOMC members’ average reported dots that were released, respectively, in September 2013 and September 2014. Appendix B contains additional figures for the other SEP dates.
Figure 2 indicates that in September 2013 the target rate trajectory under discretion is significantly more hawkish than the reported SEP. In particular, it prescribes that the lift-off should take place before the end of 2013. The trajectory under full commitment, on the other hand, is excessively dovish from 2015 onwards.

In September 2014, the reported average dots lie in-between the discretion and partial commitment paths (see Figure 3). Even though the suggested lift-off under discretion is in 2014 (much before what is implied by the SEP dots), its trajectory is closer to the dots for the 2016-2017 period. Under partial commitment, the Federal Reserve’s reaction after the lift-off would be much more caution than what committee members are currently anticipating.
What is somewhat surprising about the results in Table 2, is that the language used by the FOMC in its statements has changed considerably since the end of 2008. For example, in December 2012, the committee radically changed its forward guidance communication: instead of using dates to express the time until when rates would be kept at zero, the FOMC started to report thresholds of inflation and unemployment to indicate when it would start raising rates.

The FOMC would alter its statement once again in March 2014, when unemployment improved. The statement dropped the unemployment threshold in its forward guidance but stated that this change “does not indicate any change in the Committee’s policy intentions”.

Perhaps by allowing more flexibility to the degrees of commitment, one could capture changes in the FOMC behavior that are concomitant to changes in the committee’s forward guidance statement. Our reduced form Taylor Rule strategy to model monetary policy is a way to do that.

4.2 When will the target rate lift-off?

Having established the most plausible policy conduct behavior by the Federal Reserve, we compute confidence intervals around our simulated trajectory for every SEP. These “uncertainty bands” correspond to the percentiles of the simulated target rate probability distribution for a given horizon. We report the 5th-95th, 10th-90th, 15-85th, 25th-75th and 35th-65th percentiles. Figure 4 shows the simulated weighted average path of the target rate, the confidence bands and the average reported September 2014 SEP dots for the 2014-2017 period. The lighter grey shades correspond to the 5th-95th pair of percentiles, while the darker grey to the 35th-65th percentiles.

Figure 4: Reported, Simulated Path and Intervals for the Target Rate - September 2014

Figure 4 has one striking feature: the confidence intervals are unrealistically wide. For example, even though the reported path for the fed funds rate in 2015Q4 is 1.25% – and the simulated trajectory is able to closely track that – all percentiles below the median are still at
zero. This means there is a considerable risk that the target rate will still be in the zero lower bound in 2015Q4. On the other hand, all percentiles above the median are at 4%. There is a huge variability in the possible values that the nominal rate can achieve. Even for a longer horizon such as 2016Q4, the 5th, 10th and 15th percentiles are still at the zero lower bound.

It is particularly curious that no FOMC participant believe that the fed funds rate will be at the zero lower bound in the end of 2016 – the lowest reported value is 0.375%. In fact, only two committee members judge that the target rate lift-off should begin during 2016.

This is a consequence of the simplicity of the New Keynesian model. Because the model is purely forward looking and lacks real rigidities, optimal policy recommends that, once lift-off commences in a given contingency, the central bank should place the target rate at the steady-state level in a couple of sizeable moves. This is why there is almost no quarters where the lower and upper percentiles are different from 0.25% and 4%, respectively. It also explains why all percentiles eventually collapse to the 4% level (2018 onwards).

As for the lift-off uncertainty, the 35th-65th percentile pair indicates that the first rate increase might be as late as the first quarter of 2016, or as early as 2015Q2. However, if we look at more extreme percentiles, the variability increases dramatically. The 5th-95th pair, for example, shows an early increase in 2014Q4 or a late increase only in 2018Q2.

These deficiencies justify the use of a more quantitative model such as SW, where rigidities, endogenous states and monetary policy smoothing turn the experiment more realistic.

5 Results for the Smets and Wouters (2007) model

5.1 How has the FOMC been conducting monetary policy?

Now, we report results for the SW model. First, we wish to characterize the optimal interest rate smoothing coefficient, that is, the coefficient which minimizes the distance between simulated and reported SEP dots. For the SW model, we consider the median target rate trajectory as the simulated one. We do not need to use the weighted average simulation, as we did earlier14. Table 3 shows the results for our preferred specification: we assume the financial shock has the same two-state stochastic nature as before, and all remaining shocks are NID.

Table 3 indicates a clear change in policy behavior by the FOMC. Until December 2012, the SEP dots are consistent with a highly inertial monetary policy. The optimal smoothing coefficient ranges from 0.90 to 0.94, with an average of 0.92. The high values for the smoothing coefficient suggest the FOMC has been acting under commitment during 2012.

However, in 2013 and 2014 there is a downward shift in the intensity of monetary policy inertia. From March 2013 to March 2014 the average smoothing coefficient is 0.86, with a range from 0.80 to 0.91. And in the last two SEPs (June and September 2014) there is a more drastic reduction. The coefficient is 0.63 and 0.06, respectively.

This result suggests that the degree of commitment by the FOMC has decreased. In fact, for the September 2014 SEP, the optimal smoothing coefficient is 0.06, meaning that the dots were projected assuming a Taylor Rule with almost no dependence to past states of the economy.

14Our results do not change if we compare the average dots with the average simulated trajectory. A similar table as the one reported here is available in the Appendix
Table 3: Optimal Interest Rate Smoothing Coefficient: Benchmark specification

<table>
<thead>
<tr>
<th>Date of Projection Release</th>
<th>Optimal Smoothing Coefficient ρ</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>0.92</td>
<td>0.544</td>
</tr>
<tr>
<td>April 2012</td>
<td>0.92</td>
<td>0.119</td>
</tr>
<tr>
<td>June 2012</td>
<td>0.92</td>
<td>0.269</td>
</tr>
<tr>
<td>September 2012</td>
<td>0.90</td>
<td>0.280</td>
</tr>
<tr>
<td>December 2012</td>
<td>0.94</td>
<td>2.951</td>
</tr>
<tr>
<td>March 2013</td>
<td>0.88</td>
<td>0.072</td>
</tr>
<tr>
<td>June 2013</td>
<td>0.90</td>
<td>0.064</td>
</tr>
<tr>
<td>September 2013</td>
<td>0.80</td>
<td>0.134</td>
</tr>
<tr>
<td>December 2013</td>
<td>0.83</td>
<td>0.101</td>
</tr>
<tr>
<td>March 2014</td>
<td>0.91</td>
<td>0.106</td>
</tr>
<tr>
<td>June 2014</td>
<td>0.63</td>
<td>0.248</td>
</tr>
<tr>
<td>September 2014</td>
<td>0.06</td>
<td>3.629</td>
</tr>
</tbody>
</table>

* Financial shock follows the stochastic two-state process with constant exit probability, and other shocks are NID.

NOTE: Simulations are conducted with 750 draws of shock sequences for each possible value of ρ. Grid considered is between 0.00 and 0.99, with 0.01 increases.

This would characterize the behavior of the committee as discretionary.

Nonetheless, the computed distance for the September 2014 SEP is considerably greater than the other dates, indicating that even though the Taylor Rule with no inertia is the best fit for the dots, it is still a poor fit relative to the other SEP dates.

It is important to observe that the results using the SW model are in line with the New Keynesian model (see Table 2), that is, that the degree of monetary policy commitment has decreased during the 2012-2014 period. Also, the discretionary behavior by the Fed in September 2014 is captured by both models.

The reduction in policy inertia captured by our experiment follows a significant change in the FOMC forward guidance statement. Until December 2012, the FOMC used a time dependent framework in order to express forward guidance. For example, the statement in the June 2012 meeting read:

“(…) the Committee decided today to keep the target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that economic conditions—including low rates of resource utilization and a subdued outlook for inflation over the medium run—are likely to warrant exceptionally low levels for the federal funds rate at least through late 2014.”.

However, in December 2012 the committee decided to switch to a state dependent framework when expressing forward guidance. This change followed a recommendation made by Woodford (2012) in the Jackson Hole meeting. The December 2012 statement read:

“(…) the Committee decided to keep the target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that this exceptionally low range for the federal funds rate will be appropriate at least as long as the unemployment rate
remains above 6-1/2 percent, inflation between one and two years ahead is projected to be no more than a half percentage point above the Committee’s 2 percent longer-run goal, and longer-term inflation expectations continue to be well anchored.”.

The decrease in policy commitment only begins in 2013 (and accelerates in 2014), but it is still insightful to account that the change in guidance anticipated the reduction in commitment as captured by the Summary of Economic Projections dots.

In the end of 2013 the FOMC also announced the tapering of its Quantitative Easing program (QE). Starting in January 2014, the Federal Reserve would start adding mortgage-backed securities and Treasury securities to its balance sheet at slower paces. The QE eventually ended in October 2014.

As our results show, it is precisely in 2014 that the decrease in the optimal smoothing coefficient is clear-cut. Therefore, the more discretionary projections of the SEP are simultaneous to the QE tapering. This is somewhat intuitive: as the Federal Reserve alters its commitment to increase its balance sheet, it is expected that the FOMC members would start projecting the target rate using a more discretionary framework.

Table 7 in Appendix D, shows the results assuming that the only shock in the SW model is the financial one (with the two-state stochastic structure). Our main conclusion would not change, as results also indicate to a decrease in the commitment degree of the SEP projections.

Table 8 in Appendix D displays results when the other shocks are assumed to follow a parsimonious VAR model, instead of NID. This VAR is estimated using the filtered shocks for the 1991Q2 to 2007Q3 period. The estimated model is a VAR(3). The qualitative results are also the same, even though we observe a not so low smoothing coefficient in the September 2014 SEP.

5.2 When will the target rate lift-off?

Finally, we address the lift-off in the more realistic SW model. Once again, we define the uncertainty bands as the percentiles of the simulated fed funds rate distribution. As in the New Keynesian model, we report the 5th-95th, 10th-90th, 15-85th, 25th-75th and 35th-65th percentiles. Figures 5 and 6 show the simulated median trajectory of the fed funds rate and the reported median SEP dots for September 2013 and September 2014, respectively.

Comparing Figures 5 and 6 with Figures 2 and 3 we observe that the SW model is able to track the SEP dots even when we aggregate the simulated path using the median. That is, we do not need to compute the weighted average, because the model itself delivers a smoother increase for the target rate.

However, for the September 2014 SEP it still seems that the SW model is having trouble matching the reported dots. Even though the optimal smoothing coefficient implies a discretionary behavior by the Federal Reserve, our median simulated trajectory is not as hawkish as the median reported dots. Also, note that because we are computing the uncertainty with respect to all seven shocks, the target rate can take high values, such as almost 8%. Appendix C reports the results for all SEP dates.

We also take a more detailed look to establish our lift-off date as of the September 2014 Summary of Economic Projections. Figure 7 plots the simulated median path for the nominal
interest rate and the uncertainty bands on every year-end from 2012 to 2022, along with the percentiles of the interest rate distribution.

Figure 8 plots these data on a quarterly basis for 2014 - 2017. We also compare the simulated trajectory with the end of the year SEP dots and the Fed Funds Future rates. The latter represents the market expectations for the level of the Target Rate as of September 30th, 2014. Results for all SEP dates are available from the authors, upon request.

Using the SW model, we obtain more reasonable results. Notably, the uncertainty bands have a more realistic shape. The introduction of more rigidities in the model implies the percentiles are different from 0.25% or 4% in many quarters (recall Figure 4 where this was not the case).

Our median simulated path for the Fed Funds rate implies a 2015Q2 lift-off. However, the model suggests that the first increase will be of 75 basis-points, while later hikes will be smaller. Our median simulation indicates that the target rate will be at the 1% level by 2015Q4, which means the FOMC will increase rates with considerable caution. Naturally, the SEP dots indicate a more hawkish trajectory by the FOMC given that the reported target rate projection is at 1.50%.

The 2015Q2 lift-off projections seems unlikely to materialize in light of the recent guidance given by committee members (especially chairwoman Yellen). However, this corresponds to a projection made by committee members in September 2014, when such guidance was, at the time, unknown. One must also take into consideration that this simulation allows for seven different shocks.

As for the uncertainty regarding the lift-off, the 35th-65th percentiles indicate that the first rate increase might be as early as 2015Q1 but no later than 2016Q4. If we look at more extreme percentiles, the gap is widened. For example, for the 5th-95th percentiles the target rate lift-off should occur sometime between 2014Q4 and 2028Q2. These are big gaps, but one must keep in mind that we are dealing with seven different shocks. In a model with the financial shock alone,
the uncertainty is greatly reduced (see Appendix E).

How does our simulated path compare with the Fed Funds future? First, the Fed Funds Future imply a more dovish trajectory to the target rate than the SEP dots. This result is intriguing as has been documented by Bauer and Rudebusch (2013). We do not attempt to provide the answer to this “puzzle”, but it is satisfying that our median trajectory is located between the market’s and the FOMC’s projections. If we take our simulations to be correct, it does seem to be the case that the market is more dovish than necessary whereas the FOMC is more hawkish. For instance, the lift-off predicted by the Fed Funds Future is actually 2015Q3, not 2015Q2 as implied by our median trajectory. Nonetheless, the Fed Funds Future trajectory is always inside our simulated percentiles.

As mentioned, using our benchmark specification that considers all shocks other than the financial one to be NID, we obtain a 2015Q2 lift-off estimate, with a very big uncertainty band: 2014Q4 to 2028Q2. However, results change if we look at the other specifications.

First, if we want to assess the uncertainty regarding the financial shock alone, we can use our specification in which all other shocks are turned-off. Appendix E shows the results. In this case, the lift-off projected by the median trajectory is 2015Q2. The uncertainty, as expected, is greatly reduced. The 35th-65th percentiles imply that the lift-off should take place in 2015Q2 as well (there is no variation). If we look at the more extreme percentiles, such as the 5th-95th, the uncertainty is also small: 2015Q1 up to 2015Q2.

On the other hand, we might wish to keep all shocks, but draw them from an estimated VAR using the filtered shocks data. This makes sense if one argues that shocks are correlated (which seems to be the case, empirically). Using this specification, the implied lift-off is 2015Q3. The uncertainty, however, is also not as large as the baseline specification (with NID shocks). The 35th-65th percentiles indicate that the first rate increase should take place sometime between 2015Q2 and 2016Q1.
Figure 7: Reported and Simulated (median) Paths for the Target Rate - September 2014

Figure 8: Assessing Lift-off: SEP Dots, simulated path and Fed Funds Future - September 2014
Finally, our experiment also allows us to gauge how the lift-off uncertainty has changed throughout these years. To do that, we look at the median quarter when the first rate increase is expected to take place for each SEP date. We also assess whether the lift-off band has changed, i.e., the quarter associated with the first increase in the 35th and 65th percentiles. Table 4 shows these results. Here we conduct the experiment using only our baseline specification.

Table 4: Evolution of the Lift-off Uncertainty

<table>
<thead>
<tr>
<th>Date of Projection Release</th>
<th>Optimal Smoothing Coefficient</th>
<th>Date of lift-off for 65th perc. trajectory</th>
<th>Date of lift-off for median trajectory</th>
<th>Date of lift-off for 35th perc. trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 2012</td>
<td>0.92</td>
<td>2013Q1</td>
<td>2013Q3</td>
<td>2014Q3</td>
</tr>
<tr>
<td>Apr 2012</td>
<td>0.92</td>
<td>2013Q3</td>
<td>2014Q2</td>
<td>2015Q1</td>
</tr>
<tr>
<td>Jun 2012</td>
<td>0.92</td>
<td>2013Q3</td>
<td>2014Q2</td>
<td>2015Q2</td>
</tr>
<tr>
<td>Sep 2012</td>
<td>0.90</td>
<td>2014Q1</td>
<td>2014Q4</td>
<td>2015Q3</td>
</tr>
<tr>
<td>Dec 2012</td>
<td>0.94</td>
<td>2013Q3</td>
<td>2013Q3</td>
<td>2014Q1</td>
</tr>
<tr>
<td>Mar 2013</td>
<td>0.88</td>
<td>2014Q3</td>
<td>2015Q1</td>
<td>2015Q1</td>
</tr>
<tr>
<td>Jun 2013</td>
<td>0.90</td>
<td>2014Q3</td>
<td>2015Q1</td>
<td>2015Q4</td>
</tr>
<tr>
<td>Sep 2013</td>
<td>0.80</td>
<td>2014Q3</td>
<td>2014Q4</td>
<td>2015Q3</td>
</tr>
<tr>
<td>Dec 2013</td>
<td>0.83</td>
<td>2014Q4</td>
<td>2015Q1</td>
<td>2016Q1</td>
</tr>
<tr>
<td>Mar 2014</td>
<td>0.91</td>
<td>2014Q3</td>
<td>2014Q4</td>
<td>2015Q3</td>
</tr>
<tr>
<td>Jun 2014</td>
<td>0.63</td>
<td>2014Q4</td>
<td>2015Q1</td>
<td>2015Q2</td>
</tr>
<tr>
<td>Sep 2014</td>
<td>0.06</td>
<td>2015Q1</td>
<td>2015Q2</td>
<td>2016Q4</td>
</tr>
</tbody>
</table>

* Financial shock follows the stochastic two-state process with constant exit probability, and other shocks are NID.

NOTE: Simulations are conducted with 750 draws of shock sequences for each possible value of ρ. Grid considered is between 0.00 and 0.99, with 0.01 increases.

Two results are worth highlighting. First, the lift-off date as implied by the median trajectory has been postponed. For example, for the first five SEPs the initial increase was expected for 2013 or 2014. Nonetheless, since March 2013 all our simulations are indicating that the zero lower bound should end sometime between 2014Q4 and 2015Q1. Second, the lift-off uncertainty (as measured by the number of quarter between the two lift-off date percentiles) has been somewhat constant. From an uncertainty of 7 quarters in January 2012 this number was reduced to 3 quarters in June 2014, and then up again to 7 quarters in 2014.

6 Concluding Remarks

Using data from the Summary of Economic Projections released by the Federal Reserve, we address two issues. First, we assess what kind of monetary policy behavior best fits the reported SEP dots. Then, conditional on the inferred behavior, we quantify the uncertainty regarding the fed funds rate lift-off.

We proceed using two different models. The standard New Keynesian model of Eggertsson and Woodford (2003) allows us to solve for the optimal discretion and (full / partial) commitment solutions. However, given the lack of rigidities and the pure forward-looking nature of the model, our estimates for the lift-off uncertainty do not seem realistic. On the other hand, the Smets and Wouters (2007) model provides results which are more realistic in a quantitative sense. The drawback is that we do not model optimal policy explicitly, rather, we use the interest-rate
smoothing coefficient as a proxy: the higher this coefficient, the more we can say monetary policy is time dependent or inertial, bringing the Taylor Rule closer to a commitment behavior.

We find that partial commitment is the behavior which best describes the average reported SEP dots for most dates. This means the Federal Reserve is re-optimizing its state-contingent plan every time it releases new projections. In effect, such behavior is quite discretionary. For the latest available SEP (September 2014) we find that the optimal discretion path for the target rate is the one which best fits the dots. Similarly, as the SW model shows, the degree of time dependence associated with the Taylor Rule has decreased. In particular, the lowest value for the optimal smoothing coefficient is the one associated with the June 2014 Summary of Economic Projections. This decrease in monetary policy inertia can perhaps be related to the numerous changes made by the committee in its statements. In particular, a move toward a state dependent framework to express forward guidance is followed by a reduction in the optimal smoothing parameter. Also, the reduction in the commitment degree increased greatly after the Quantitative Easing tapering began.

Regarding the assessment of the uncertainty in the target rate lift-off, the standard New Keynesian model proves to be of little quantitative use. The percentiles of the simulated fed funds rate distribution imply unrealistically large confidence intervals, as measured by the percentiles of the interest rate distribution. The zero lower bound could last as long as the second quarter of 2018 or end as early as the end of 2014. Also, the model predicts the target rate could be as high as 4% right after the lift-off.

On the other hand, the SW model is much more realistic. Our benchmark specification where the financial shock is a two-state stochastic process and the other shocks are NID implies a lift-off in 2015Q2. This is the date associated with the median target rate trajectory. Recent indications given by FOMC members render this projection unlikely, but one must remember that this corresponds to a projection made in September 2014. Our other specifications imply similar point estimate for the lift-off: 2015Q2 and 2015Q3. As for the uncertainty, the simulated 35th-65th percentiles indicate the first increase could be as soon as 2015Q1, but no later than 2016Q4.

Our projection implies a sooner lift-off than the market’s expectations, as measured by the Fed Funds Future curve in the end of September 2014. However, our median trajectory for the September 2014 SEP lies between the market’s and the FOMC’s hawkish projections. Also, for all dates the Fed Funds Future rate lies inside our “confidence intervals” as measured by the simulated percentiles of the interest rate distribution.

Despite some limitations, the analysis presented here has important consequences. First, we bring to attention the fact that the Summary of Economic Projections only reports point estimates. There is a considerable uncertainty embedded in the predictions which is not divulged. The public should not trust these projections blindly: it is important to bear in mind that the lift-off can be substantially anticipated (postponed) if the outlook for the economy turns out to be more (less) favorable. We should take vice-chairman Fisher's words seriously. Second, we emphasize that the FOMC’s choice of policy conduct might change in time. Large-sized models that are constructed with estimation purposes could benefit from the inclusion of this changing feature of the policymaker. Finally, to the best of our knowledge, this is the first paper which
uses the Summary of Economic Projections data to infer something about the Federal Reserve’s behavior and lift-off uncertainty. As illustrated in this paper, the use of such information can lead to interesting conclusions.
References

A Calibration of the Shock’s Exit Probability

In this Appendix we describe the calibration of the shock’s exit probability, γ, in more detail. Our purpose is to calibrate the probability so that the central moments (the weighted average or the median) of our simulated fed funds rate distribution matches the SEP dots.

Let N^* denote the number of quarters from a SEP release date until the target rate lift-off. From our assumption on the stochastic process of the shocks, N^* is a random variable. Also, let N^{SEP} denote the number of quarters from a SEP release date until the implied lift-off by that same SEP projections. We calibrate the shock exit probability to satisfy:

$$\gamma|\text{median}(N^*) = N^{SEP}$$

(39)

$$\gamma|\text{weighted average}(N^*) = N^{SEP}$$

(40)

We use equation (39) if we want to match the median SEP dots and equation (40) if we want to match the average dots, under discretion.

Remember that γ actually refers to the shock’s exit probability and not the lift-off probability, and that optimal commitment policy prescribes interest rates should be kept at zero for an extended period, even after the shock has vanished. Hence, equations (39) and (40) do not take into account this endogenous delay inherent to commitment policies, and therefore, are only correct to calibrate the probability under discretion (when there is no policy delay).

To obtain a correct calibration for the exit probability under commitment, we need to solve the problem of finding a probability that will generate a delay period such that the lift-off of the simulated target rate trajectory is the same as observed in the SEP data. Therefore, we search for a probability γ that will deliver such a trajectory in the neighbourhood of the probability computed using (39) and (40). We do perturbations around the calibrated discretion probability and simulate the model to check if the lift-off date is consistent with SEP data.

There is still a difference between partial and full commitment. Under full commitment, optimization occurs only in 2008Q4. Say we want to calibrate the exit probability for the June 2014 SEP. For a given value of γ, there will be contingencies (shock histories) for which the target rate will be greater than zero for periods earlier than June 2014. We know, however, that is not true. Therefore, we assign zero probability to such contingencies, i.e. we filter them out of our simulation exercise. Under partial commitment such procedure is not necessary because optimization always occurs at the date the SEP is released.

There is yet another aspect of the SEP data which we must take into consideration. The dots only reflect year-end opinions for the target rate. The June 2014 SEP, for example, reports a 1.25% median level for the target rate in the end of 2015. It is unlikely, however, that the first increase happens in 2015Q4. If we were to take that face value, we would bias our calibration of the exit probability, because we would consider a longer lasting endogenous delay.

To solve that, we make a simplifying assumption that once lift-off begins, the FOMC will raise interest rates at a pace of 25bps per meeting until the first end of the year. Therefore, if we observe a 1.25% target rate value in 2015Q4 and we know the FOMC meeting calendar for 2015, we conclude that the lift-off date is in July 2015 (2015Q3). So we actually target 2015Q3
as the lift-off date and not 2015Q4, as the SEP dots would imply.

Our calibration exercise implies there will be a different exit probability under discretion, partial and full commitment. For each SEP and type of behavior, there is not a unique probability that matches the lift-off date rather, a range of probabilities. If we want to target the median SEP dots, the range of calibrated probabilities are given in Table 5. Table 6 reports the probabilities when we target the average dots. Results shown in the paper do not change if we use any value inside the ranges as our calibration for γ.

Table ?? presents the sum of distances between the average reported target rate trajectories and the (weighted average of) simulated ones, organized by type of behavior and release date.

The calibration exercise just described is conducted using the standard New Keynesian model, where optimal discretion and commitment policies are available. Such an exercise is not feasible using the Smets and Wouters (2007) model, because we solve and simulate the model for 100 different values of the interest rate smoothing coefficient. Therefore, for the more complex model we simply calibrate the exit probability according to equation (39), since we target the median SEP dots. This is equivalent to pick a value for γ inside the range of the third column in Table 5.

Table 5: Calibrated Exit Probability Under Different Assumptions about Monetary Policy Behavior: Matching the Median SEP Dots

<table>
<thead>
<tr>
<th>Date of SEP Release</th>
<th>Full Commitment</th>
<th>Partial Commitment</th>
<th>Discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>7.0% - 7.3%</td>
<td>9.5% - 12.9%</td>
<td>5.9% - 6.4%</td>
</tr>
<tr>
<td>April 2012</td>
<td>8.3% - 9.4%</td>
<td>13.0% - 15.4%</td>
<td>6.4% - 7.0%</td>
</tr>
<tr>
<td>June 2012</td>
<td>6.9% - 7.3%</td>
<td>11.0% - 12.9%</td>
<td>6.4% - 7.0%</td>
</tr>
<tr>
<td>September 2012</td>
<td>5.9% - 6.5%</td>
<td>9.5% - 10.9%</td>
<td>5.0% - 5.4%</td>
</tr>
<tr>
<td>December 2012</td>
<td>6.6% - 6.9%</td>
<td>9.5% - 12.9%</td>
<td>5.4% - 5.8%</td>
</tr>
<tr>
<td>March 2013</td>
<td>7.1% - 7.2%</td>
<td>11.0% - 12.9%</td>
<td>5.9% - 6.4%</td>
</tr>
<tr>
<td>June 2013</td>
<td>7.3% - 8.2%</td>
<td>13.0% - 15.4%</td>
<td>6.4% - 7.0%</td>
</tr>
<tr>
<td>September 2013</td>
<td>7.3% - 8.2%</td>
<td>15.5% - 15.9%</td>
<td>7.0% - 7.8%</td>
</tr>
<tr>
<td>December 2013</td>
<td>8.3% - 9.3%</td>
<td>15.5% - 15.9%</td>
<td>7.8% - 8.8%</td>
</tr>
<tr>
<td>March 2014</td>
<td>15.7% - 15.8%</td>
<td>16.0% - 20.8%</td>
<td>8.8% - 10.1%</td>
</tr>
<tr>
<td>June 2014</td>
<td>13.0% - 15.7%</td>
<td>20.7% - 25.0%</td>
<td>10.1% - 11.8%</td>
</tr>
<tr>
<td>September 2014</td>
<td>16.6% - 20.6%</td>
<td>29.3% - 30.4%</td>
<td>11.9% - 14.2%</td>
</tr>
</tbody>
</table>

For the case of Full and Partial Commitment, each cell corresponds to a range of probabilities which yield the same lift-off date as the median SEP dots under the assumption that the FOMC will increase rates 25bps per meeting until the first year-end after the lift-off. For the case of discretion, each cell corresponds to a range of probabilities that satisfy equation (39).
Table 6: Calibrated Exit Probability Under Different Assumptions about Monetary Policy Behavior: Matching the Average SEP Dots

<table>
<thead>
<tr>
<th>Date of SEP Release</th>
<th>Full Commitment</th>
<th>Partial Commitment</th>
<th>Discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>1.7% - 1.9%</td>
<td>4.3% - 4.7%</td>
<td>8.7% - 9.5%</td>
</tr>
<tr>
<td>April 2012</td>
<td>2.0% - 2.3%</td>
<td>4.8% - 6.6%</td>
<td>10.5% - 11.8%</td>
</tr>
<tr>
<td>June 2012</td>
<td>2.0% - 2.3%</td>
<td>4.8% - 6.6%</td>
<td>10.5% - 11.8%</td>
</tr>
<tr>
<td>September 2012</td>
<td>2.4% - 2.9%</td>
<td>6.7% - 9.3%</td>
<td>8.7% - 9.5%</td>
</tr>
<tr>
<td>December 2012</td>
<td>1.5% - 1.7%</td>
<td>3.3% - 4.2%</td>
<td>8.7% - 9.5%</td>
</tr>
<tr>
<td>March 2013</td>
<td>1.8% - 2.0%</td>
<td>4.3% - 4.7%</td>
<td>9.5% - 10.5%</td>
</tr>
<tr>
<td>June 2013</td>
<td>2.1% - 2.4%</td>
<td>4.8% - 6.6%</td>
<td>10.5% - 11.8%</td>
</tr>
<tr>
<td>September 2013</td>
<td>2.5% - 3.1%</td>
<td>6.7% - 9.3%</td>
<td>10.5% - 11.8%</td>
</tr>
<tr>
<td>December 2013</td>
<td>1.6% - 1.7%</td>
<td>4.3% - 4.7%</td>
<td>11.8% - 13.3%</td>
</tr>
<tr>
<td>March 2014</td>
<td>1.8% - 2.0%</td>
<td>4.8% - 6.6%</td>
<td>13.3% - 15.4%</td>
</tr>
<tr>
<td>June 2014</td>
<td>3.0% - 3.1%</td>
<td>6.7% - 9.3%</td>
<td>15.4% - 18.2%</td>
</tr>
<tr>
<td>September 2014</td>
<td>4.0% - 4.1%</td>
<td>9.4% - 10.9%</td>
<td>18.2% - 22.2%</td>
</tr>
</tbody>
</table>

For the case of Full and Partial Commitment, each cell corresponds to a range of probabilities which yield the same lift-off date as the average SEP dots under the assumption that the FOMC will increase rates 25bps per meeting until the first year-end after the lift-off. For the case of discretion, each cell corresponds to a range of probabilities that satisfy equation (40).
B Additional Figures for Optimal Monetary Policy Behavior under the New Keynesian Model

Figure 9: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - January 2012
Figure 10: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - April 2012

Figure 11: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - June 2012
Figure 12: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - September 2012

Figure 13: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - December 2012
Figure 14: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - March 2013

Figure 15: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - June 2013
Figure 16: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - December 2013

Figure 17: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - March 2014
Figure 18: Reported median SEP dots and Simulated weighted average paths for the Target Rate under different policy assumptions using the New Keynesian model - June 2014
C Additional Figures for matching the SEP Dots using the Smets and Wouters (2007) model

Figure 19: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.92$ using the SW model - January 2012
Figure 20: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.92$ using the SW model - April 2012

Figure 21: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.92$ using the SW model - June 2012
Figure 22: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.90$ using the SW model - September 2012

Figure 23: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.94$ using the SW model - December 2012
Figure 24: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.88$ using the SW model - March 2013

![Figure 24](image1.png)

Figure 25: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.90$ using the SW model - June 2013

![Figure 25](image2.png)
Figure 26: Reported, Simulated (median) and uncertainty bands for the SEP dots with \(\rho = 0.83 \) using the SW model - December 2013

![Figure 26](image)

Figure 27: Reported, Simulated (median) and uncertainty bands for the SEP dots with \(\rho = 0.91 \) using the SW model - March 2014

![Figure 27](image)
Figure 28: Reported, Simulated (median) and uncertainty bands for the SEP dots with $\rho = 0.63$ using the SW model - June 2014
D Optimal Smoothing Coefficient: Different specifications

Table 7 reports the results assuming the usual two-state stochastic process for the financial shock, and turning off all other innovations. Table 8 maintains the assumption for the financial shock, whereas the other shocks are drawn from a VAR(3) model which is estimated using the filtered shock sequence.

Table 7: Optimal Interest Rate Smoothing Coefficient: Financial Shock Onlya

<table>
<thead>
<tr>
<th>Date of Projection Release</th>
<th>Optimal Smoothing Coefficient ρ</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>0.93</td>
<td>0.188</td>
</tr>
<tr>
<td>April 2012</td>
<td>0.90</td>
<td>0.132</td>
</tr>
<tr>
<td>June 2012</td>
<td>0.92</td>
<td>0.197</td>
</tr>
<tr>
<td>September 2012</td>
<td>0.96</td>
<td>0.147</td>
</tr>
<tr>
<td>December 2012</td>
<td>0.96</td>
<td>0.223</td>
</tr>
<tr>
<td>March 2013</td>
<td>0.84</td>
<td>0.080</td>
</tr>
<tr>
<td>June 2013</td>
<td>0.88</td>
<td>0.078</td>
</tr>
<tr>
<td>September 2013</td>
<td>0.84</td>
<td>0.136</td>
</tr>
<tr>
<td>December 2013</td>
<td>0.85</td>
<td>0.169</td>
</tr>
<tr>
<td>March 2014</td>
<td>0.90</td>
<td>0.003</td>
</tr>
<tr>
<td>June 2014</td>
<td>0.60</td>
<td>0.091</td>
</tr>
<tr>
<td>September 2014</td>
<td>0.06</td>
<td>2.501</td>
</tr>
</tbody>
</table>

a Financial shock follows the stochastic two-state process with constant exit probability, and other shocks are assumed to be always zero.

NOTE: Simulations are conducted with 750 draws of shock sequences for each possible value of ρ. Grid considered is between 0.00 and 0.99, with 0.01 increases.
Table 8: Optimal Interest Rate Smoothing Coefficient: Poisson + VAR Shocks

<table>
<thead>
<tr>
<th>Date of Projection Release</th>
<th>Optimal Smoothing Coefficient ρ</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2012</td>
<td>0.90</td>
<td>0.188</td>
</tr>
<tr>
<td>April 2012</td>
<td>0.76</td>
<td>0.132</td>
</tr>
<tr>
<td>June 2012</td>
<td>0.92</td>
<td>0.197</td>
</tr>
<tr>
<td>September 2012</td>
<td>0.85</td>
<td>0.147</td>
</tr>
<tr>
<td>December 2012</td>
<td>0.94</td>
<td>0.223</td>
</tr>
<tr>
<td>March 2013</td>
<td>0.45</td>
<td>0.080</td>
</tr>
<tr>
<td>June 2013</td>
<td>0.86</td>
<td>0.078</td>
</tr>
<tr>
<td>September 2013</td>
<td>0.62</td>
<td>0.136</td>
</tr>
<tr>
<td>December 2013</td>
<td>0.61</td>
<td>0.169</td>
</tr>
<tr>
<td>March 2014</td>
<td>0.93</td>
<td>0.003</td>
</tr>
<tr>
<td>June 2014</td>
<td>0.45</td>
<td>0.091</td>
</tr>
<tr>
<td>September 2014</td>
<td>0.62</td>
<td>2.501</td>
</tr>
</tbody>
</table>

- Financial shock follows the stochastic two-state process with constant exit probability, and other shocks are drawn from a VAR(3) estimated using the filtered shocks.
- NOTE: Simulations are conducted with 750 draws of shock sequences for each possible value of ρ. Grid considered is between 0.00 and 0.99, with 0.01 increases.
E Lift-off Uncertainty Bands under Different Specifications

Figure 29: Lift-off in a model with the financial shock only - September 2014

Figure 30: Assessing Lift-off in a model with financial shock only - September 2014
Figure 31: Lift-off when other shocks follow a VAR(3) - September 2014

Figure 32: Assessing Lift-off when other shocks follow a VAR(3) - September 2014