Male Labor Supply and Generational Fiscal Policy*

Christian vom Lehn†
Brigham Young University

Aspen Gorry‡
Utah State University

Eric O’N. Fisher§
California Polytechnic State University

June 13, 2016

Abstract

Between 1948 and 2000, hours worked per man in the United States fell by twenty percent. Using a life cycle model of labor supply with intensive and extensive margins, we assess how much of this decline can be accounted for by changes in tax and transfer policies. We use policy measures from the generational accounting literature, capturing the lifetime fiscal burdens faced by each birth-year cohort. Changes in age demographics and fiscal policy together account for roughly half of the decline in hours worked. Policy alone explains approximately thirty percent, both in the aggregate and for different age groups.

Keywords: Generational Accounts; Taxes; Male Labor Supply; Life Cycle

JEL codes: E24, E62, H24, H31, H6, J11, J22

---

*We are grateful for comments received from Frank Caliendo, Lei Fang, Carlos Garriga, Victor Rios-Rull, and Johanna Wallenius. We also thank participants in seminars at the 2015 Western Economics Association Meetings, 2015 Fall BYU-USU Macro Workshop, Federal Reserve Bank at Philadelphia, Federal Reserve Bank at St. Louis, 2016 Spring Midwest Macro Meetings, and 2016 North American Econometric Society Summer Meetings for their helpful comments.

†Department of Economics, 130 Faculty Office Building, Provo, UT 84602. cvomlehn@byu.edu.

‡Corresponding author. Department of Economics and Finance, 3565 Old Main Hill, Logan, UT 84322-3565. aspen.gorry@gmail.com.

§Department of Economics, 03-444, 1 Grand Avenue, San Luis Obispo, CA 93407. efisher@calpoly.edu.
1 Introduction

Since World War II, the amount of work done by men in the United States has declined substantially. Figure 1 plots the annual total hours worked per person for men, showing that total male hours have declined by twenty percent from 1948 to 2000. This large decline is perhaps surprising given that many estimates of labor supply elasticities for males are quite low.\(^1\) And as shown in Table 1, this decline has prominently occurred along the extensive margin; employed men are not only working less but, fewer men are working. Consistent with this fact, Table 1 shows that the decline in hours worked has been particularly concentrated among younger and older men, when the decision of whether or not to work is prominent.

In this paper, we ask how much of the decline in male work can be accounted for by changes in generational tax and transfer policies in the US. We combine a version of the life cycle labor supply model of Rogerson and Wallenius (2009), which features both intensive and extensive margins, with measures of lifetime tax and transfer rates from the generational accounting literature, originally pioneered by Auerbach, Gokhale, and Kotlikoff (1991). Our model combined with these tax and transfer measures generates life cycle labor supply profiles for each birth cohort from 1900 to 1995. Variation in a cohort’s labor supply by age is determined by an exogenous age-dependent productivity profile that is chosen to match a life cycle profile of hours worked. To compare our predicted labor supply profiles with the data, we aggregate labor supply across cohorts to construct total hours worked in each year. An advantage of using a quantitative life cycle model is that it also predicts how changes in taxes and transfers impact hours worked at different ages. Therefore, we also compare these predictions of hours worked by age group with the data.

This novel application of the generational accounts provides a transparent measure of how the burden of fiscal policy varies across individuals born in different years that is consistent with individual life cycle budget constraints.\(^2\) Moreover, these measures allow us to identify the degree

---

\(^1\)See Keane (2011) for a survey of this literature.

\(^2\) We contrast generational accounting measures of taxes and transfers with the average annual tax rates that are typically used in macro studies of taxes on labor supply in section 3. While standard models of labor supply imply that the marginal tax rate is important for individual labor supply decisions, our life cycle model implies that the average tax rate is also important for an individual’s decision to work at each date.
to which tax revenues are transferred back to the household, an important ingredient of our model. Finally, as discussed in Gorry and Oberfield (2012), when individuals face a lifetime budget constraint, taxes faced at one age in the life cycle may influence labor supply at other ages. Consistent with this idea, we find that lifetime tax rates better account for the timing of how changes in fiscal policy impact aggregate hours worked.\(^3\)

The combination of changes in fiscal policy and the changes in the age distribution of the population together account for roughly half of the decline in hours worked per man from 1948 through 2000. Further, the timing of the decline generated in our results is consistent with observed declines, matching well trends for the entire time period, with the exception of the decade of the 1970s. Holding fixed demographic changes, changes in policy alone account for roughly 30% of the decline in hours worked. The model accounts for nearly the same fraction of decline in each age group, including men aged 16 through 24 and over 55, where the declines have been largest. Incorporating the extensive margin of labor supply is particularly important for explaining changes in labor supply by the young and the old. We find that the extensive margin generates roughly two thirds of the policy-driven decline for workers under 24 and half of that for workers over 55. These declines at the extensive margin for young and old workers together account for roughly 30% of the total decline in aggregate hours worked per man generated by the model.

For context, it is useful to compare our results to those of Prescott (2004) and Ohanian, Raffo, and Rogerson (2008), who use the first order conditions of a standard growth model to assess the contribution of tax changes to changes in hours worked across OECD countries.\(^4\) As mentioned above, an important difference in our approach is that generational accounts pinpoint the fraction of tax revenues rebated to the household, whereas previous studies have assumed that all tax revenues are rebated. As Rogerson (2006, 2007) points out, the extent to which tax revenues are rebated to the household has a strong influence on how taxes impact labor supply in growth models. In particular, with balanced growth preferences and zero rebates, taxes have no effect on labor supply

---

\(^3\)Auerbach, Kotlikoff, and Koehler (2016) have recently argued that current year tax rates may not adequately capture effects that fiscal policy have on discouraging work.

\(^4\)McDaniel (2011) also studies the effects of tax changes in a dynamic setting that includes productivity growth and home production.
as income and substitution effects exactly offset.\textsuperscript{5} An additional benefit of our approach is that, as shown in Rogerson and Wallenius (2009), the inclusion of the extensive margin reconciles differing values of the Frisch elasticity that arise in micro and macro studies. Therefore, our results also contrast with the existing literature by not requiring a parameterization of labor disutility that implies a Frisch elasticity at odds with micro studies. Our results are not very sensitive to varying parameter values for the disutility of work.

In focusing on the decline in male labor supply, we abstract from the simultaneous increase in female labor supply that has occurred over this same time period. This decision is motivated by evidence from Juhn (1992), Juhn and Murphy (1997) and Juhn and Potter (2006), who argue that the women who have increased their labor supply have not come from the same households as the men who have been decreasing their labor supply. We reproduce some of the evidence from Juhn (1992) in Appendix B and extend upon it by showing that the decline in hours worked for married and non-married men is extremely similar. While changes in female labor supply may have had an impact on individual household decisions, these changes do not appear to be generating the observed decline in hours worked by men. Because our model describes labor supply and not labor demand, we feel this evidence justifies our focus on men. Further, as our measures of policy are not gender-specific, we might expect similar outcomes for female labor supply based on our model. Thus, while female labor supply has increased, potential explanations for this pattern must account for the possible work disincentive effects of these policy changes for women in addition to the measured increase in female labor supply.\textsuperscript{6}

To our knowledge, this is the first paper to study the decline in male labor supply in a quantitative life cycle model. We build on the literature studying labor supply decisions over the life cycle; see Erosa, Fuster, and Kambourov (2012), Wallenius (2013), Laun and Wallenius (2013a,b), and Alonso-Ortiz (2014). These papers generally focus on the role specific government programs play

\textsuperscript{5}However, as we discuss in Section 6, if instead of measuring transfers from the generational accounts we assume that all tax revenues are transferred back to households as is done by Prescott (2004), our results are quantitatively similar to previous studies.

\textsuperscript{6}See Kaygusuz (2010), Guner, Kaygusuz, and Ventura (2012a,b), and Bick and Fuchs-Schündeln (2014) for recent work on how tax policy changes may affect both female and household labor supply.
in explaining cross-country differences in the late-life labor supply patterns of men; our focus is on the time series changes in labor supply behavior by men at all ages in the United States. Our paper is also complementary to recent work by Bick and Fuchs-Schündeln (2014), who use a static household framework to study the labor supply behavior of married men and its interaction with the labor supply of married women, tax treatment of households, and cross-country variation in tax policies.

Our work also builds on the largely empirical literature studying declines in male labor force participation. Our findings are consistent with work by Parsons (1980) and Autor and Duggan (2003), who have argued that changes in social security benefits for retired and disabled workers have had strong work disincentives. Further, the fact that our model is unable to generate the decline in male hours worked in the 1970s relates to the work of Juhn, Murphy, and Topel (1991) and Juhn (1992), who argue that changing skill demands in the 1970s led to lower wages for low skilled men, resulting in reduced labor supply. Ngai and Petrongolo (2014) make a similar argument in a quantitative model of structural transformation, arguing that changes in male hours worked may be driven by the reduced importance of industries where men have comparative advantages, such as manufacturing.

Finally, there has been a substantial amount of recent interest in male labor force participation since the financial crisis. We find that both secular trends in tax and transfer policies and demographic composition predict a substantial (and ongoing) decrease in hours worked by men since the year 2000. This is consistent with work by Aaronson et al. (2006) and Aaronson et al. (2014), who argue that much of the recent decline in male labor force participation is attributable to long term trends.

2 Model

To model life cycle labor supply decisions, we construct a model closely following the setup of Rogerson and Wallenius (2009). Consider an individual who lives for one unit of time. The
individual chooses a lifetime consumption plan, and whether and how much to work at each date. The preferences of individual $j$ are represented by

$$\int_0^1 [u(c_j(a)) - v(h_j(a))] da,$$

where $j$ denotes the individual’s cohort, $c_j(a)$ is consumption at age $a$, and $h_j(a)$ is hours worked at age $a$. The instantaneous utility from consumption $u(\cdot)$ is assumed to be twice continuously differentiable and strictly concave. The instantaneous disutility of labor is $v(\cdot)$. We assume that there is a fixed utility cost of working at each instant, $\chi$. A possible interpretation of this is the fixed cost of commuting or getting ready for work. Then $v(\cdot)$ is given by

$$v(h_j(a)) = \tilde{v}(h_j(a)) + \chi I_{h_j(a)>0}.$$ 

Here, we assume that $\tilde{v}$ is twice continuously differentiable and strictly convex. $I_{h_j(a)>0}$ is an indicator function that takes the value of one if the individual works a strictly positive number of hours at a given date.

The individual in cohort $j$ faces a lifetime budget constraint,

$$\int_0^1 [(1 - \tau_j)y_j(a) - c_j(a)] da + T_j \geq 0,$$

where $y_j(a)$ is the flow of income at age $a$, $\tau_j$ is the proportional lifetime income tax rate faced by generation $j$, and $T_j$ is the present value of lump-sum government transfers for this agent. When making labor supply decisions, the tax rate for the cohort and total transfers are taken as given.

---

7We abstract from discounting and assume a zero interest rate for simplicity of exposition. We relax this assumption in calibrating the model, described in Section 4.

8Rogerson and Wallenius (2009) model the fixed costs as a time cost which maps more directly into commuting. Our setup follows Gorry and Oberfield (2012) where a fixed utility cost still generates a meaningful decision to work or not at the extensive margin.

9The assumption of a lifetime budget constraint implies the presence of complete securities markets, allowing for free transfer of resources across the agent’s lifetime.
We assume that
\[ y_j(a) = w_j(a)h_j(a), \]
where \(w_j(a)\) is the exogenously given wage for an individual of age \(a\) that varies deterministically over the life cycle.

In this formulation, the individual in cohort \(j\) chooses a consumption path \(c_j(a)\) and working profile \(h_j(a)\) for \(a \in [0, 1]\) to maximize
\[
\int_0^1 [u(c_j(a)) - v(h_j(a))] \, da
\]
subject to the lifetime budget constraint given above.

Since the discount rate and interest rate are equal, the individual chooses to perfectly smooth consumption. Hence, \(c_j(a) = c_j\), a flat consumption profile. This smoothing also implies that differences in hours worked across different ages only depend on the wage that the individual faces and not on age itself. Moreover, given the fixed disutility of working at each date, the individual only works when his wage is above some reservation wage, \(w_j^*\).

These properties allow us to reformulate the problem as one of choosing a consumption level and an hours profile that depends on wages rather than age. Let \(F_j(w)\) be the cumulative distribution function of wages that the individual faces, with support of \([w_j, \bar{w}_j]\). Assume that \(F_j(\cdot)\) is continuously differentiable and that there is an interior solution for the reservation wage \(w_j^*\). We can then rewrite the individual’s problem as choosing a constant consumption profile \(c_j\), a reservation wage \(w_j^*\), and an hours worked function \(h_j(w)\) for \(w \in [w_j^*, \bar{w}_j]\) to maximize
\[
u(c_j) - \int_{w_j^*}^{\bar{w}_j} v(h_j(w)) \, dF_j,
\]
subject to
\[
c_j = (1 - \tau_j) \int_{w_j^*}^{\bar{w}_j} wh_j(w) \, dF_j + T_j.
\]
The first order necessary condition with respect to $h_j(w)$ is

$$\frac{v'(h_j(w))}{u'(c_j)} = (1 - \tau_j)w,$$

and with respect to the reservation wage $w^*_j$ is

$$\frac{v(h_j(w^*_j))}{u'(c_j)} = (1 - \tau_j)w^*_jh_j(w^*_j).$$

These necessary conditions have standard interpretations. The first condition states that the after-tax real wage balances the marginal disutility of labor against the marginal utility of consumption. The second describes the extensive margin. At the reservation wage, one’s entire take-home pay at balances the disutility of working $h(w^*_j)$ hours (the marginal disutility of choosing to work), with the marginal utility of consumption. The first equation gives the individual $j$’s labor supply for $w \in [w^*_j, w_j]$, and the second determines the reservation wage, $w^*_j$.

Individual $j$ is the representative of a generation that faces an economic environment shaped by its lifetime tax rate on income $\tau_j$, its lifetime lump-sum transfers $T_j$, and the distribution of wages during its life $F_j(w)$. It is convenient to express generational lump-sum transfers as a fraction $\theta_j$ of lifetime labor income:

$$T_j = \theta_j \int_{w^*_j}^{w_j} wh_j(w) dF_j.$$

## 3 Measuring Taxes and Transfers

### 3.1 Generational Accounts

We draw from the literature on generational accounts to measure tax and transfer rates by cohort $\tau_j$ and $\theta_j$. Beginning with Auerbach, Gokhale, and Kotlikoff (1991), generational accounting is a proposed alternative to traditional deficit accounting in assessing the viability and sustainability
of fiscal policy.\(^\text{10}\) An important insight of this literature is that conventional cash-flow measures of policy variables do not adequately represent the dynamic nature of fiscal policy nor how their burdens are distributed across different generations, including those not yet born. Hence, it is important to keep track of how the benefits and costs of tax-transfer policies accrue to different agents in the economy.\(^\text{11}\)

This literature commonly measures how government consumption and transfers are financed by different generations using the following intertemporal government budget constraint:

\[
\sum_{j=t-D}^{t} N_{t,j} + \sum_{j=t+1}^{\infty} N_{t,j} = \sum_{s=t}^{\infty} G_{t,s} + B_t.
\]

\(G_{t,s}\) is the present value at time \(t\) of government consumption in year \(s\) and \(B_t\) is current government debt. This formulation assumes that individuals live for \(D\) years. \(N_{t,j}\) is the present value at time \(t\) of net taxes that fall on cohort \(j\), and is called the generational account for cohort \(j\). Net taxes burdens for future generations, \(j > t\), are computed as a residual given measurement of other all other objects. While the generational accounting literature is commonly interested in the generational accounts for future generations, we are only interested in the generational accounts for past and current generations.\(^\text{12}\)

The generational accounts, \(N_{t,j}\), are simply the difference of the present value of cohort \(j\)'s total tax payments at time \(t\), \(P_{t,j}\), and the present value of total transfers received by that cohort, \(T_{t,j}\):

\[
N_{t,j} = P_{t,j} - T_{t,j}.
\] \(^1\)

Auerbach, Gokhale, and Kotlikoff (1993) and Gokhale, Page, and Sturrock (1999) show that

---

\(^{10}\)See Conesa and Garriga (2015) for a recent discussion of generational accounting methodology and an analysis of how generational accounting measures relate to intergenerational welfare consequences of changing fiscal policies.

\(^{11}\)Fisher (1995) shows that these ideas are true also in economies with incomplete financial markets, and Fisher and Kasa (1997) extend them in a model of the open economy where the crowding out of capital may also occur.

\(^{12}\)Given an estimate of income for future generations, it is possible to compute projected lifetime tax rates for unborn generations and evaluate how this would impact their labor supply. However, a careful assessment of the labor supply response of the unborn would require assumptions regarding how their net taxes are distributed between taxes and transfers.
Generational accounts can be used to construct lifetime tax and transfer rates by birth cohort. These rates are computed by dividing each generation’s present value of tax payments and transfers at the time of birth, $P_{j,j}$ and $T_{j,j}$, by the present value of lifetime labor income at birth, $Y_{j,j}$. The lifetime gross tax rate $\tau_j$ and gross transfer rate $\theta_j$ for birth cohort $j$ are:

$$\tau_j = \frac{P_{j,j}}{Y_{j,j}}$$ and $$\theta_j = \frac{T_{j,j}}{Y_{j,j}}.$$ 

Constructing these tax rates requires data on the taxes paid, transfers received, and labor income earned by each cohort at each point in time. Gokhale, Page, and Sturrock (1999) use micro data to assess the distribution of payments, transfers, and income in each year across different birth cohorts. They then multiply these distributions by total tax receipts, transfer payments, and labor income in the relevant calendar year. Total tax payments include primarily taxes on labor income, capital income, payroll taxes, excise taxes, and property taxes. Transfer payments include social security transfers, Medicaid and Medicare, and welfare payments. These tax and transfer rates are computed using data through the year 1995. For cohorts still alive in 1995, future taxes and transfers are calculated using projections of fiscal policy based upon Congressional Budget Office forecasts and payment distributions in the last year for which data are available coupled with population projections based on life expectancy tables from the Social Security Administration. Additional details are available in Auerbach, Gokhale, and Kotlikoff (1993).

Gross lifetime tax and transfer rates for each cohort from 1900 to 1995 are plotted in Figure 2. The original figures in Gokhale, Page, and Sturrock (1999) are only reported by decade starting in 1900; the annual measures shown in Figure 2 are obtained by polynomial interpolation. From 1900 to 1950, there were substantial increases in these rates. And although the gross tax rate has fallen some for more recent cohorts, the transfer rate has continued to increase. Notably, the

---

13 Some generational accounts provide separate estimates of tax and transfer rates for males and females, as in Auerbach, Gokhale, and Kotlikoff (1993). However, interpretation of these gender-specific policy rates is difficult, as several components of taxes and transfers are only measured at the household level.
transfer rate is substantially lower than the tax rate. This is in part because the largest sources of government transfers are social security and Medicare, which are paid later in an individual’s life and thus are heavily discounted. While some government spending is not included in the transfer rate, we follow Rogerson (2006, 2007) and argue that many of these expenditures, such as those for national defense, may have no impact on the marginal utility of private consumption.\textsuperscript{14}

3.2 Methodological Comparison with Other Tax Measures

The remainder of this section compares our tax and transfer measures with the measures of average annual tax rates typically used in the macro literature. The most comprehensive measure of aggregate tax rates comes from McDaniel (2007), who constructs the tax measures used in Ohanian, Raffo, and Rogerson (2008). Building on the approaches of Prescott (2004) and Mendoza, Razin, and Tesar (1994), McDaniel (2007) constructs an average labor tax rate by computing aggregate taxes paid in each calendar year and then dividing by aggregate labor income.\textsuperscript{15}

It is helpful to recall that in both our life cycle model and also the standard growth model used by Ohanian, Raffo, and Rogerson (2008) it is the \textit{marginal} tax rate that determines hours worked per worker. However, in our model, the \textit{average} tax rate is also important for hours worked decisions because of the extensive margin. The tax rates computed by McDaniel (2007) and those computed from the generational accounts both measure \textit{average} tax rates. In Ohanian, Raffo, and Rogerson (2008), the model has one person per year, so the average tax rate proxies for an aggregate marginal rate since there is no heterogeneity. We have a single lifetime rate faced by each cohort that proxies for both the marginal and average tax rates. Using this average lifetime tax rates fits with individual behavior on the extensive margin, where the bulk of the changes in hours worked occurs in the data.

Using generational accounts has two obvious virtues. First, they are consistent with life cycle

\textsuperscript{14}In Section 6, we consider how variation in the transfer rate affects our results by allowing for education expenditures to enter into the analysis.

\textsuperscript{15}The final tax wedges used in Prescott (2004) and Ohanian, Raffo, and Rogerson (2008) also depend on the consumption tax rates that are also computed in McDaniel (2007).
labor supply decisions. Traditional annual cash-flow measures of tax rates may not adequately
capture the timing of the labor supply response, since labor supply decisions may depend on tax
rates in other years than the current one. Second, transfers as well as taxes matter for labor supply
decisions. With balanced-growth preferences, if taxes are collected and “thrown into the ocean”
($\theta_j = 0$), there is no effect on labor supply. Much of the existing literature, including Prescott
(2004) and Ohanian, Raffo, and Rogerson (2008), goes to the opposite extreme, assuming that
all taxes collected are rebated lump sum to the household ($\theta_j = \tau_j$). In practice, this assumption
is not directly imposed on the quantitative work, but Rogerson (2006, 2007) emphasizes that the
theoretical implications of this assumption are significant. Using estimates of lifetime transfer rates
provide us with empirical discipline on their level and thus a more precise estimate of their effect
on labor supply.

A drawback of generational accounts relative to McDaniel (2007) is that it lumps all taxes,
including capital and excise taxes, into one measure. This may misrepresent the relevant tax rate
for labor supply decisions and changes in measured tax rates may not reflect actual changes
in the labor tax wedge. We take comfort, however, from the observations in McDaniel (2007), that,
with the exception of payroll and labor income taxes, all other tax rates in the US have decreased
or remained stable since the year 1950. Thus, the inclusion of these alternate tax rates means any
measured increases in generational lifetime tax rates are likely to be understated.

In summary, we view the use of generational accounts as a useful complement to the existing
literature and not a replacement for other measures of tax and transfer rates. In Section 6, we
explore the some of the quantitative implications of these measurement differences through several
robustness checks, which make modifications to the rates computed from generational accounts,
and discuss to what extent lifetime tax rates better account for the timing of the decline in hours.
4 Calibration

4.1 Aggregation over Time and Age

Since our model predicts a unique hours profile for each cohort, we would like ideally to compare the model with detailed micro data on hours worked by each birth cohort in every year. Detailed annual data on hours worked by age, however, are available only since 1962. But annual data on hours worked per person in roughly 10 year age groups are available from the Bureau of Labor Statistics (BLS) since 1948. Therefore, we focus our study on hours worked in these coarse age bins and aggregate labor supply for males 16 and older. This section describes how we aggregate the hours profiles by cohort from the model to be comparable with the data. For simplicity, although all of our calculations are for men and in per capita terms, we will henceforth refer to model and data results as simply hours worked.

4.1.1 Time Aggregation

Since the representative agent for each cohort $j$ lives for one unit of continuous time in the model, we must map the interval $[0, 1]$ into discrete ages. We assume that each cohort in the model lives from age 16 to 80, and integrate over discrete sets within the interval $[0, 1]$ to construct each cohort’s hours worked at each age. Annual hours worked by cohort $j$ at age $v = 16, \ldots, 80$ are

$$H_j(v) = \int_{a \in A_v} h_j(a) da,$$

Because data on tax and transfer rates by cohort are available only for men born after 1899, the model cannot describe any policy-driven changes for workers over 55 until 1956 and for workers over 65 until 1966. Hence, in both the model and the data, hours worked by men age 55-64 are held constant at their 1960 level until 1960, and for men over age 65, hours worked are held constant until 1970. By these years, half of the relevant cohorts have potential variation in tax and transfer rates. As labor supply for 16-17 year old workers in 2013-2014 depends on cohorts born after the year 1995, we assume that these cohorts face the same policies as that born in 1995.

Integrals are computed numerically using standard procedures. Our results are robust to reducing the life span to allow agents to live until only 70 or 75, or extending it for ages prior to 16. This robustness stems from our use of balanced growth preferences and the calibration of the life cycle wage profile, discussed in the next section.
where \( A_v = \max\{v - 16.5, 0\}, \min\{v - 15.5, 1\} \). An agent of age \( v \) in calendar year \( t \) was born in year \( j = t - v \), and he works

\[
H(t, v) \equiv H_{t-v}(v)
\]

hours in that year.

### 4.1.2 Age Aggregation

To aggregate model output for hours worked by each age in each year, we require data on the fraction of the population at each age, \( \phi(t, v) \), for ages \( v = 16, \ldots, 80 \) and for every year \( t \). We obtain values of these population weights from the March Current Population Survey (CPS) and the Decennial Census; details are in Appendix A.

Given information on the fraction of the population at each age at time \( t \), we aggregate the model’s predictions for hours worked by age and year into broad aggregates. We consider five separate age bins, \( V_k \), for \( k \) in the five age groups we consider: 16-24, 25-34, 35-44, 45-54, and 55+.

Hours worked per person for age bin \( V_k \) are:

\[
H_k(t) = \frac{\sum_{v \in V_k} H(t, v) \phi(t, v)}{\sum_{v \in V_k} \phi(t, v)}.
\]

\(^{18}\) We assume that individuals counted as, say age 20, are effectively agents between the ages of [19.5,20.5). This is consistent with taking monthly averages of BLS data to get annual hours worked by age group. Our results are robust to counting agents at 20 as being agents in ages [20,21].

\(^{19}\) Data on detailed population weights are also subject to the same limitations faced for hours worked. However, as the evolution of the age distribution of the population is far more predictable than hours worked and not our object of interest, we feel comfortable obtaining weights for missing years by interpolation. Further details are available in Appendix A.

\(^{20}\) While there are slightly more detailed data available for workers under age 24 and over age 55, given the model’s stylized hours worked decision at the extensive margin, we focus on these broader bins. Note that if the reservation wage is realized only at ages near the end of the interval in an age bin, this can dramatically misrepresent the hours worked changes for that bin. However, the next section shows that the exact age cutoffs for hours worked are nicely centered in the 16-24 and 55+ age bins.
Aggeregate hours worked per person at time $t$ is then given by:

$$H(t) = \sum_k H_k(t) \varphi_k(t),$$

where $\varphi_k(t) = \sum_{v \in V_k} \varphi(t, v)$ is the population share in age group $V_k$.

### 4.2 Functional Forms and Parameter Values

We choose utility functions that are consistent with balanced growth preferences:

$$u(c_j) = \log c_j$$

and

$$v(h_j(w)) = \alpha \frac{h_j(w)^{1+\gamma}}{1+\gamma} + \chi \frac{h_j(w)}{h_j(w) > 0}.$$  

We also impose a subjective discount factor and a real interest rate that are both 3%. With these functional form choices for preferences, it is not difficult to show that the effective tax wedge in the model will be $\frac{(1-\tau_j)}{(1-\tau_j + \theta_j)}$. Again, if $\theta_j = 0$, changes in taxes have no effect on labor supply.

Calibration of the life cycle wage profile, $w_j(a)$, is important for the model’s results. Rupert and Zanella (2015) show that standard life cycle models using actual wage profiles fail to reproduce profiles of hours worked that are consistent with the data, particularly for older and younger workers. We do not make progress in resolving this puzzle. Instead, we calibrate the wage profile for the 1940 cohort to match average labor supply behavior for men born from 1935 through 1945. We focus on the 1935-1945 cohorts as we have data on their hours worked for nearly their entire lives. In particular, we calibrate the profile of wages to match data on average hours per

---

21The generational accounts literature typically assumes an interest rate of 6%. Our results are robust to using this value for the interest rate and discount rate.

22An alternative, isomorphic calibration would be to feed in wages from the data and then calibrate an age-varying disutility of work to match the life cycle labor supply profiles in the data. Other work has tried to endogenize this type of age variation, usually for female labor supply, by explicitly modeling utility/disutility from children; see Rupert and Zanella (2014) and Bick (2016).
worker across the life cycle.\(^{23}\)

We further assume that each cohort faces the same wage profile as the 1940 cohort, \(w_j(a) = w_{1940}(a)\).\(^{24}\) Since income and substitution effects are off-setting with balanced growth preferences, this assumption is justified if the changes in wage profiles are proportional at each age in life. We have also considered using the limited data available on wage growth across cohorts to compute wage profiles that vary by cohort; incorporating these effects does not change our aggregate results.\(^{25}\) An advantage of calibrating the wage profile to match actual hours worked behavior for a particular cohort is that this implicitly accounts for any other constant non-wage factors that impact average hours worked over the life cycle, e.g. constant progressivity in the tax structure. While this calibration strategy matches life cycle hours worked for the 1940 cohort, holding the wage profile fixed while allowing policy to vary allows us to assess the impact of policy on hours of different cohorts.

The exact calibration of the wage profile depends on the parameterization of the agent’s disutility of labor. Following Rogerson and Wallenius (2009), we choose \(\gamma = 1\), as this choice is consistent with both micro and macro estimates of the Frisch elasticity of labor supply. Figure 3 reports the calibrated wage profile, \(w(a)\). With \(\gamma = 1\), wages roughly double over the life cycle, which is generally consistent with wage profile reported in Rupert and Zanella (2015). Appendix C shows that our results are robust to different values of \(\gamma\). In constructing wage profiles for different values of \(\gamma\), we find that the implied life cycle wage profile provides some support for \(\gamma = 1\). Substantially larger or smaller values of \(\gamma\) imply vastly counterfactual predictions for the slope of

\(^{23}\)We calibrate the hours profile using the first order conditions for hours worked conditional on working. Wages outside the working life are calibrated by extrapolation of these first order conditions; this is equivalent to calibrating the wages where the fixed cost is zero. The wage is normalized to 1 at age 16 and assumed to be zero above age 75. Details of measuring hours per worker are in Appendix A. An equivalent calibration would be to feed in measured wage profiles from the data and then allow for variation in preferences to match the labor supply behavior over the life cycle.

\(^{24}\)Given the life cycle wage profile, \(w(a)\), it is straightforward to construct the CDF over wages, \(F(w)\), needed to solve the model.

\(^{25}\)There are two problems with allowing for changing wage profiles across time. The first is measurement. Because of substantial data limitations, any attempt to construct wage profiles for each cohort from 1900 through 1995 will require substantial interpolation. Second, interpolated wage profiles imply the fastest wage growth among the young and the old as is Kambourov and Manovskii (2009) and Kong, Ravikumar, and Vandenbroucke (2014), ages at which the relationship between wages and labor supply is still not well understood. Thus, while allowing for these changing wage profiles does not change our aggregate results, we do not report them in the paper.
the wage profile.

We calibrate the two remaining parameters, $\alpha$ and $\chi$, to normalize the maximum hours worked at a point in the life span to 1 and to match the fraction of life spent working for the 1940 cohort. We assume the representative agent in the 1940 cohort works for 44 years. This assumption is consistent with the data, which shows that median hours worked for individuals in the 1940 birth cohort are positive for 44 years. These calibration targets give values of $\alpha = 1.24$ and $\chi = 0.43$. Figure 3 also shows the reservation wage implied by these values for the 1940 cohort. This reservation wage implies that the 1940 cohort works from approximately age 19 to age 63. Appendix C shows that our results are robust to different values for $\chi$.²⁶

5 Results

5.1 Aggregate Results and Results by Age Group

Figure 4 shows the time series of hours worked from 1948 to 2014 in the model and the data; all series are normalized to 1 in the year 1948.²⁷ Prior to the cyclical downturns in the 2000s, the combination of policy changes and changes in the age distribution of the population account for approximately 50% of the decline in the data. Further, the timing of this decline in our results closely matches what we observe in the data and our results even generate a meaningful decline in labor supply following the year 2000. The only exception is the decade of the 1970s, when the data shows a sizable decline in hours worked, but the model generates minimal decline.

Figure 5 shows the model’s results for each decadal age group: 16-24, 25-34, 35-44, and 55+. The model best accounts for the decline in hours worked for men aged 16-24 and 55+, the ages that have experienced the greatest decline in the data. For individuals ages 25 through 54, the model generates much less decline. As with the aggregate results, results by age group match

²⁶ An alternative approach is to allow for some heterogeneity in $\chi$, and then weight the labor responses of different $\chi$ values to smooth the age cutoffs across several different ages. We have experimented with this in a few simple ways and found similar results.

²⁷ As we report results both for the aggregate and for individual age groups, it is not possible to calibrate the model to match the initial levels of hours worked for the aggregate and each age group.
quite well the timing of labor supply changes in the data with the exception of the 1970s. As most of the decline in hours worked for prime-aged workers occurred in that decade, the model only accounts for roughly 30% of the total decline observed in the data, compared to 60 to 75% explained for older and younger workers. The model generates larger declines for the youngest and oldest workers for two reasons: greater sensitivity to changes in demographics due to the steeper wage profile at these ages and importance of the extensive margin, which is operative only at these ages. Sections 5.2 and 5.3 disentangle each of these effects.

Table 2 summarizes these results for the period 1948 to 2000, showing the fraction of the decline in observed hours worked that the model explains for the aggregate and each age group. In total, changes in age demographics and in tax and transfer policies explain half of the decline in male hours worked between 1948 and 2000.

### 5.2 Holding Demographic Change Fixed

Since the aggregate results from the model are generated using the age distribution of the population, it is important to understand how much of the predicted decline in hours is due to fiscal policy and how much is due to mechanical changes in demographics. We use the following standard decomposition:

\[
\frac{\Delta H(t)}{H(t)} = \frac{\sum_k \bar{H}_k \Delta \varphi_k(t)}{H(t)} + \frac{\sum_k \Delta H_k(t) \varphi_k}{H(t)}. \tag{2}
\]

where \(\bar{H}_k\) and \(\bar{\varphi}_k\) are the averages – across the beginning and ending periods – of hours worked and the population share for age group \(k\). The first term on the right shows the demographic effects alone, and the second term shows labor supply effects with fixed population weights. This decomposition only represents changes in the composition of the population across the broad age bins \(V_k\). We initially focus on decomposing demographic changes across decadal age groups because we have a complete data time series of hours worked at this level of age aggregation.

Table 3 reports the results of this decomposition in the model and in the data. Since our results in Figure 4 suggested that the model explains less of the decline after 1970, we consider both
the demographic decomposition for both the full sample from 1948 to 2000 and the period 1948 to 1970. For the decline between 1948 and 2000, changes in demographics contribute nothing to the decline in hours worked. However, a sizable part of the decline in both the data and the model between 1948 and 1970 comes from demographic changes. This is more clearly visible in Figure 6, which plots the hours worked generated from either only allowing variation in the share of the population in each age bin or from holding this variation fixed. These changes in the age distribution contribute significantly to hours worked declines through the year 1970, but reverse and have minimal aggregate impact by the year 2000. However, demographics are prominent again in generating most of the predicted decline in labor supply after the year 2000.

While changes in the age composition of the population across these decadal age groups contribute minimally to the decline in hours worked through 2000, changes in the age composition at the individual age year level may yet be important. Figure 7 shows the counterfactual hours worked series generated by allowing either only detailed population shares to or only policy to change over time. Demographic change generates most of the decline in hours worked through the year 1970, but generates an increase in hours worked throughout the 1980s, though there is still some impact of demographic change still present by the year 2000. In contrast, changes in policy generate a near linear trend decline in hours worked, and serve to offset the increase in hours worked coming from demographics during the 1980s. Both changes in policy and changes in demographics contribute to the predicted decline in labor supply after the year 2000.

Although annual data on hours worked at each age are not available for the entire period we study, we can compute an estimate of the effect of demographic change in the data by combining microdata from the 1950 Census and the March CPS beginning in 1962. With this estimate, we can determine how much of the decline in hours worked not explained by demographics can be accounted for by solely the changes in taxes and transfers of our model.

Table 4 reports the results of this more detailed decomposition for the years 1948-2000. After accounting for demographic changes, changes in policy alone account for roughly 30% of the total

---

28Details of how this is computed are reported in the notes to Table 4.
decline in both aggregate hours worked and hours worked holding demographics fixed. Within age groups, the model also accounts for roughly 30% of the decline holding demographics fixed in each group. We also report the results of this more detailed decomposition for the years 1948-1970 in Table 5. As seen in Figure 7, demographic changes play an important role for this time period. However, holding demographic changes fixed, the model still explains roughly 30% of the decline in hours worked.29

In summary, the model accounts for 49% of the decline in hours worked between 1948 and 2000. We find that about 28% comes from changing policies and the remaining 21% comes from demographic changes, but that the contributions of these two forces have fluctuated significantly over time and are both contributing to the decline in hours worked since 2000.30

5.3 Intensive versus Extensive Margins

To understand the relative importance of the intensive and extensive margins of labor supply, we decompose our results across these two margins. In year $t$, data measures of hours worked per person $H(t)$ can be written as

$$H(t) = \sum_v \frac{H(t,v)}{E(t,v)} E(t,v) \phi(t,v),$$

where $\frac{H(t,v)}{E(t,v)}$ is hours per worker of age $v$ (intensive margin), $E(t,v)$ is the fraction of the population working of age $v$ (extensive margin), and $\phi(t,v)$ is the corresponding share of the population. This decomposition allows us to compute the relative contribution of intensive and extensive margin changes, using the same approach as used for demographic change, shown in Equation 2.31 In

---

29For older workers, policy explains much more of the decline through the year 1970 than it does through 2000. However, as described previously, hours worked by men over age 55 are held constant through the year 1960, and over age 65 through 1970, meaning that the data and the model capture different behavior in the post-1970 period for hours worked by men over age 55.

30Notably, the model suggests a slightly larger role for demographic shifts than we estimate from the data over this time horizon. This may be partially due to the difficulties in carefully identifying annual labor supply at the individual age level prior to the 1960s. Another partial explanation is that the larger role of age demographics may be due to the stylized nature of the entry and exit decisions in the model.

31Due to data limitations, we make a small adjustment, relative to the decomposition shown in Equation 2. Details are described in the notes to Table 6.
doing this decomposition, we hold age distributions fixed to eliminate confounding demographic changes.

The model permits a similar decomposition. For example, consider hours worked by a 40-year-old man in 1948 and those by his counterpart in 2000. In 2000, hours worked are determined by the labor supply rule $h_{1960}(w)$ and the cut-off wage $w_{1960}^*$. For a 40-year-old man in 1948, the analogous rules are $h_{1908}(w)$ and $w_{1908}^*$. We compute the changes in hours worked coming from the extensive margin by computing the hours worked by 40-year-old men in 2000 assuming they have the same intensive margin rule as 40-year-olds in 1948, $h_{1960}(w)$. With identical intensive margin behavior, differences in hours worked only come from the extensive margin, determined by $w_j^*$. These changes are computed at each age, and aggregated holding population weights fixed. Changes coming from the intensive margin are counted as residual effects unexplained by the extensive margin.

Table 6 reports our decomposition. It is not surprising that there are no changes in the extensive margin for prime-aged males between 25 and 54, as the decisions to enter and leave the labor market occur around ages 19 and 63. This is generally consistent with the data, which also suggests a lesser role for changes in the extensive margin for these ages.

The results for young and old workers are more interesting. For younger workers, the model accounts for a sizable fraction of the decline on the extensive margin, but for less of the decline on the intensive margin. The model’s inability to explain fewer hours worked per worker for young workers is perhaps unsurprising, as the model is silent regarding other changes affecting young men, such as trends in obtaining higher education. For older workers, the model captures a modest fraction of the change along the extensive margin, where there has been the greatest total decline. The model also predicts that hours worked on the intensive margin have declined, but in

---

32In empirical applications it is commonplace to compare hours worked averaging the intensive margin behavior at both the start and end dates, as in Equation 2. However, hours worked per worker is not well defined for those who are not currently employed. Hence, we fix hours worked per worker at its initial level. The same is done for the data decomposition; using averages in the data does not change the results significantly.

33Changes in higher education enrollment are likely to strongly impact the intensive margin of labor supply. In 1970, roughly 50% of college students ages 16-24 were employed during their studies, and that fraction has been steadily rising; see National Center for Education Statistics (2009).
the data these hours have actually increased.\textsuperscript{34} However, Rupert and Zanella (2015) note that there has been a blurring of intensive and extensive margin adjustment among older workers in the data, which may complicate a detailed comparison.

We raise two points of caution in interpreting these results. First, with a typical concave wage profile, the model predicts that there will at most be two ages where the extensive margin is relevant. However, heterogeneity within cohorts regarding life cycle productivity, perhaps owing to education, could lead to extensive margin changes at other ages.\textsuperscript{35} Second, the representative agent for each cohort has perfect foresight and is able to transfer resources across the life cycle. Loosening either of these assumptions would likely lead to smaller declines in labor supply early in life and greater declines later in life, as workers with additional savings are able to retire sooner.

In spite of these cautions, an important feature of introducing the extensive margin is the ability to account for differentially large labor supply changes for younger and older workers. Comparing the intensive margin changes across ages, we see that the model produces very similar effects for each age group. Without an extensive margin, the model would grossly understate changes in labor supply for the young and old.

### 5.4 Changes in Taxes vs. Changes in Transfers

An important contribution of using generational accounts is that it gives separate measures of the taxes and transfers faced by each generation. This separate measure is an important contribution, as previous studies frequently assume that all tax revenue is rebated back to the individual. To better understand the separate role of transfers in our model, we decompose our results into changes stemming from changes in taxes and changes in transfers.

Table 7 reports the fixed demographic decline in hours worked accounted for by taxes and

\textsuperscript{34}Note that this is only true if the hours worked by older workers is constrained to be unchanging prior to 1960 for 55-64 year old men and prior to 1970 for 65+ year old men.

\textsuperscript{35}Juhn (1992) gives evidence that the decline in male labor force participation is linked to less educated workers. Our model treats every cohort as a representative agent who has average skills and faces one tax rate. High skilled workers would have different ages at which they entered and left employment. They would also face higher marginal tax rates. Without explicitly modeling this kind of heterogeneity, it may be difficult to make direct comparisons to the margins of adjustment in the data.
transfers separately. This is done by allowing one policy to vary while holding the other fixed at its value for the baseline 1940 cohort. The policy change with the greater impact is the change in the transfer rate, accounting for more than three times as much of a labor supply decline than the change in the tax rate. To understand this result, it is helpful to recall the effective tax wedge in the model, \( \frac{1 - \tau_j}{1 - \tau_j + \theta_j} \). From this expression, the level of transfers influences the effect of changes in taxes, and vice versa. In particular, if the transfer rate is zero, then wedge is identically equal to 1 for any tax rate, meaning that taxes would have no effect on labor supply. If on the other hand the transfer rate is identically equal to the tax rate, then the tax wedge is \( 1 - \tau_j \). Given the transfer rate is only about 10% on average compared to a tax rate of around 40%, changes in taxes have a muted effect on the tax wedge and thus labor supply.

6 Discussion

What do we learn from applying generational accounting measures of fiscal policy in a macroeconomic model of life cycle labor supply? It is difficult to compare our results directly with the extant literature because our model and its application are idiosyncratic. Ohanian, Raffo, and Rogerson (2008) (hereafter ORR) is the paper closest in spirit to ours, although they use quite different methods. We consider three possible comparisons between our methods and results and theirs: we directly compare measurements of tax wedges from each paper, we consider modifications to the generational accounts tax wedge to resemble theirs more closely, and we consider an empirical exercise evaluating the value added from each measure. In this discussion, we are not aiming to disparage existing literature using annual tax wedges; our objective is simply to highlight the additional value obtained from using tax and transfer rates measured from the generational accounts.
6.1 Aggregating Generational Accounts Tax Measures from Birth Cohorts to Calendar Years

One difficulty in comparing the generational accounts tax wedge with the one used in ORR, is that their tax wedge is defined with respect to calendar year, whereas ours is defined with respect to birth year. However, we can use population weights to aggregate up generational accounts tax wedges by cohort to construct an approximate calendar year tax wedge. We write the tax wedges for the two measures such that higher tax wedges correspond to reductions in labor supply in each framework. The tax wedge for ORR is given by $1 - \frac{1 - \tau_l(t)}{1 + \tau_c(t)}$, where $\tau_l(t)$ is the sum of payroll taxes and labor income taxes at time $t$, and $\tau_c(t)$ is the consumption tax at time $t$.\textsuperscript{36} Our tax wedge from generational accounting, prior to aggregation, is $1 - \frac{1 - \tau_j}{1 - \tau_j + \theta_j}$ for birth cohort $j$.

Figure 8 plots the average generational accounts tax wedge, gross tax rate and gross transfer rate against the tax wedge from ORR. The two policies are plotted on separate axes, scaled to emphasize the timing of policy changes between the two measures instead of their relative levels. We see that there is marked similarity between the behavior of these two tax wedges over time, as both have increased, with substantial increases coming prior to the year 1980. However, whereas the ORR tax wedge shows much less growth after 1980, the generational accounts tax wedge, gross tax rate, and gross transfer rate all continue to increase. The gross tax rate from generational accounts slows down eventually like the ORR tax wedge, but not until at least the 1990s. Given that the two tax trends are both driven by the same aggregate changes in labor income and payroll tax rates, the differences in timing come from the lifetime aggregation occurring in the generational accounts. When aggregated to a lifetime tax rate as in the generational accounts, the effects of the tax rate changes before the 1980s are still observed for at least the subsequent decade. And the increase in the transfer rate, not accounted for in the ORR tax wedge, further leads to increases in the total generational accounts tax wedge through the end of the sample.

Why do these timing differences matter? Both our results in our framework and the results of

\textsuperscript{36}All results using the tax wedge from ORR are robust to removing the consumption tax component.
ORR in their framework generate relatively flat aggregate levels of hours worked after the 1980s.\textsuperscript{37} However, our results in Section 5.2 showed that demographic trends from 1980 to 2000 would have led to increases in hours worked were it not for the continued downward pressure on labor supply coming from policy changes. Thus, we argue the continued increase in generational accounts policy measures after the year 1980 is necessary to generate a flat hours worked series for the period 1980 to 2000. Were demographic effects to be introduced to ORR, we expect this would lead to a counterfactual rise in hours worked occurring over this time period. Thus, in terms of generating the timing of labor supply changes from policy changes, generational accounts tax wedges offer improvement upon the existing approach.

### 6.2 Modifications to Generational Accounts Measurements

In terms of actual model predictions, ORR predict a 9.4% total decline in hours worked in the US between 1956 and 2003; for that period, our model generates a decline of 6.4%, of which 4.8% comes from policy changes alone.\textsuperscript{38} As we have shown that there are clear differences in the tax wedges across these studies, we discuss how measurement adjustments affect our conclusions.\textsuperscript{39}

Section 3 explained that generational accounts tax rates include not only labor taxes, but also those on capital and excise taxes, which differs from ORR, who only focus on labor taxes. Also, measured transfer rates do not include many categories of government expenditures, such as educational spending. As a robustness check, we consider three modifications to our tax and transfer rates: (1) adjusting the level of tax rates to represent just labor taxes; (2) adjusting the transfer rate to account for additional government spending in the form of educational expenditures; and

\textsuperscript{37}The result for ORR can be seen in their paper, but is also discernible from the time path of their tax wedge in Figure 8.

\textsuperscript{38}As neither our nor their tax wedges have explicit reference to gender, we consider this to be a reasonable comparison. That said, in their paper, this result runs contrary to the data, as their data includes both men and women. Due to the rise in female labor force participation, aggregate hours slightly rise over this time period.

\textsuperscript{39}A natural concern is that the model’s inability to produce changes in labor supply for cohorts prior to 1900 may partially account for the differences in results. However, if we assume the model could explain the same amount of the labor supply decline for these cohorts, roughly 30%, then the most we would expect this adjustment to explain is one percentage point of the difference in the final results.
allowing for full rebate of tax receipts to the household \( (\theta_j = \tau_j) \). \(^{40}\) Table 8 reports how these changes affect our results. We report both the decline from 1948 through 2000, as a comparison with our own benchmark, and the decline from 1956 through 2003 to compare directly to Ohanian, Raffo, and Rogerson (2008).

Table 8 shows that the first two modifications to tax and transfer rates generate only modest changes in our baseline results. These changes do not reconcile the differences between our findings and those of Ohanian, Raffo, and Rogerson (2008). However, if transfers fully rebate all tax revenue and demographics are fixed, the model yields a decline of 9.5%, almost exactly the same as Ohanian, Raffo, and Rogerson (2008). We see this as additional evidence that measuring the transfer rate is important for understanding the effects of fiscal policy on labor supply. We prefer our baseline estimates, because Table 8 shows that the implied change in labor supply for older workers when taxes are fully rebated is 150% of what is observed in the data, a decline we find implausibly large.

### 6.3 Reduced Form Comparison of Tax Wedges

We conclude with an empirical exercise to assess the value added of our tax wedge relative to the one used in ORR. We run regressions of male hours per person by age and calendar year on both our tax measures and the ORR tax wedge. By including both tax wedges simultaneously, the regression results show the additional explanatory power in each tax wedge beyond any common component of the two wedges. \(^{41}\)

The regressions we run take the form

\[
\log[H(t, v)] = \beta_v + \beta_{GA} \log[\tau_{GA}(t - v)] + \beta_{ORR} \log[\tau_{ORR}(t)] + \epsilon_{vt},
\]

where \( H(t, v) \) is hours worked per person at time \( t \) by a man of age \( v \), \( \tau_{GA}(t - v) \) is the generational...

\(^{40}\)Details of how these adjustments are made are available in the notes to Table 8.

\(^{41}\)As it turns out, the two tax wedges are highly correlated for any given age: 0.73 on average, with values close to 1 for some ages.
accounts tax wedge faced by a man born in year \( j = t - v \), and \( \tau_{ORR}(t) \) is the ORR wedge at time \( t \).  

The regressions are run with age fixed effects because the generational accounts tax wedge varies across birth cohorts (and thus ages), and our focus is on explaining time series variation and not life cycle variation in hours worked. As there are more birth cohorts than calendar years represented in our regression, there is more variation in the generational accounts than in calendar year tax wedges. Thus, we also report regressions within narrower age groups to show that our results are not driven by this additional variation.

What do we expect to learn from these regressions? A negative and significant coefficient on the generational accounts tax measure would indicate that, after controlling for the common component of the two tax wedges, either the addition of transfers or the inclusion of tax rates at other dates in the life cycle, has a meaningful impact on labor supply. In particular, if agents choose their labor supply in a life cycle framework, we would also expect the coefficient to be particularly large and negative for older and younger workers, where the average of tax rates over the life cycle is particularly important.

Table 9 reports the results of these regressions using hours worked per person from the 1950 and 1960 Census and 1962-2000 CPS, our generational tax wedges, and those from ORR. We explicitly exclude the post-2000 fluctuations in hours worked per person to avoid any unusual labor supply responses due to recent cyclical downturns, however, the results are similar if we include this time period.

Even controlling for the common variation observed between these two tax wedges, our tax wedge has sizable explanatory power, both for all ages and within narrow age groups. And consistent with our theory described above, the generational accounts tax wedge has a particularly large coefficient for older and younger workers. Overall, the empirical results highlight that tax

---

\(^{42}\)Regression results are robust to a variety of specifications, though we prefer log-log because that is more consistent with the first order conditions of these models. Further, given that the ORR tax wedge is much more volatile, we have checked to see using if a smoothed version of their tax wedge changes the results. It does not.

\(^{43}\)Though unreported, our conclusions hold for specific regressions on almost all individual ages as well.

\(^{44}\)Since our tax wedges are different from those in the existing literature on several dimensions, we have also run regressions to disentangle which components generate the results in Table 9. Results from these regressions are
wedges measured from the generational accounts provide additional value for explaining changes in labor supply over time.

7 Conclusion

In sum, we have found that a model with shifts in demographics and changing fiscal policy across birth cohorts can account for roughly 50% of the decline in hours worked by men between 1948 and 2000, and that the timing of the decline generated by the model closely mirrors the data. Changes in generational policy alone account for nearly 30% of this decline, both in the aggregate and within age groups. We have further highlighted some of the value added from using the generational accounts tax wedges relative to the benchmark tax wedge in the existing literature.

References


Reserve Bank of Cleveland*, 29.

of Economic Perspectives*, 73–94.

Auerbach, A. J., L. J. Kotlikoff, and D. R. Koehler (2016): “U.S. Inequality, Fiscal Pro-
gressivity, and Work Disincentives: An Intragenerational Accounting,” Working Paper 22032,
National Bureau of Economic Research.


Bick, A. (2016): “THE QUANTITATIVE ROLE OF CHILD CARE FOR FEMALE LABOR
FORCE PARTICIPATION AND FERTILITY,” *Journal of the European Economic Association*,
14, 639–668.

across countries: a macroeconomic analysis,” *Manuscript, Arizona State University*.

incidence,” *European Economic Review*.

1675–1726.

Erosa, A., L. Fuster, and G. Kambourov (2012): “Labor supply and government programs:

nomic Review*, 36, 555–568.


NGAI, R. AND B. PETRONGOLO (2014): “Gender gaps and the rise of the service economy.”


Table 1: Percentage Change in Hours Worked For Men, 1948-2000

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours per Person</td>
<td>-20</td>
<td>-32</td>
<td>-10</td>
<td>-11</td>
<td>-12</td>
<td>-27</td>
<td>-72</td>
</tr>
<tr>
<td>Employment per Person</td>
<td>-14</td>
<td>-14</td>
<td>-3</td>
<td>-6</td>
<td>-7</td>
<td>-22</td>
<td>-63</td>
</tr>
</tbody>
</table>

Data are smoothed with HP filter (6.25) to avoid cyclical sensitivity in computing percentage declines. Appendix A describes how we measure hours and employment per person.

Table 2: Model Predictions of the Percentage Change in Hours Worked for Men, 1948-2000

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-8.8</td>
<td>-18.6</td>
<td>-3.3</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-25.9</td>
</tr>
<tr>
<td>Data</td>
<td>-17.8</td>
<td>-31.5</td>
<td>-10.4</td>
<td>-10.9</td>
<td>-11.9</td>
<td>-35.2</td>
</tr>
<tr>
<td>Frac. Explained</td>
<td><strong>0.49</strong></td>
<td><strong>0.59</strong></td>
<td><strong>0.32</strong></td>
<td><strong>0.32</strong></td>
<td><strong>0.30</strong></td>
<td><strong>0.74</strong></td>
</tr>
</tbody>
</table>

Data are smoothed with HP filter (6.25) to avoid cyclical sensitivity in computing percentage declines. Because tax and transfer rates only begin in 1900, the aggregate hours for men 55 and over are constructed assuming that there are no changes in hours worked for men aged 55 through 64 until 1960 and no changes in the hours worked for men over 65 until 1970. The same assumption is applied to the model output for consistency.

Table 3: Contribution of Age Demographic Changes (Age Group Level) to Percentage Change in Hours Worked

<table>
<thead>
<tr>
<th></th>
<th>Total Demographic Changes</th>
<th>Constant Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948-2000</td>
<td>Model -8.8</td>
<td>-8.8</td>
</tr>
<tr>
<td></td>
<td>Data -17.8</td>
<td>-17.7</td>
</tr>
<tr>
<td>Frac. Explained</td>
<td><strong>0.49</strong></td>
<td><strong>0.50</strong></td>
</tr>
<tr>
<td>1948-1970</td>
<td>Model -8.8</td>
<td>-5.5</td>
</tr>
<tr>
<td></td>
<td>Data -11.5</td>
<td>-8.6</td>
</tr>
<tr>
<td>Frac. Explained</td>
<td><strong>0.77</strong></td>
<td><strong>0.64</strong></td>
</tr>
</tbody>
</table>

Because of the small contributions of population shares to the labor supply decline from 1948-2000, the percent explained by population shares is not computed. Totals do not exactly sum because of rounding.
### Table 4: Contribution of Age Demographic Changes (Individual Age Year Level) to Percentage Change in Hours Worked, 1948-2000

<table>
<thead>
<tr>
<th>Model</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-8.8</td>
<td>-18.6</td>
<td>-3.3</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-25.9</td>
</tr>
<tr>
<td>Demographics</td>
<td>-3.9</td>
<td>-9.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-18.0</td>
</tr>
<tr>
<td>Labor Supply</td>
<td>-4.9</td>
<td>-9.3</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-7.9</td>
</tr>
<tr>
<td>Total</td>
<td>-17.8</td>
<td>-31.5</td>
<td>-10.4</td>
<td>-10.9</td>
<td>-11.9</td>
<td>-35.2</td>
</tr>
<tr>
<td>Demographics</td>
<td>-2.1</td>
<td>-2.9</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>-10.9</td>
</tr>
<tr>
<td>Labor Supply</td>
<td>-15.7</td>
<td>-28.6</td>
<td>-10.7</td>
<td>-10.9</td>
<td>-12.0</td>
<td>-24.3</td>
</tr>
</tbody>
</table>

**Frac. Explained by Labor Supply:**

<table>
<thead>
<tr>
<th></th>
<th>of Total</th>
<th>0.28</th>
<th>0.30</th>
<th>0.33</th>
<th>0.32</th>
<th>0.30</th>
<th>0.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>of Labor Supply</td>
<td>0.31</td>
<td>0.33</td>
<td>0.32</td>
<td>0.32</td>
<td>0.30</td>
<td>0.33</td>
<td></td>
</tr>
</tbody>
</table>

We use microdata from the 1950 Census and the March CPS for the years 1962-2000 to compute hours per population by age group. With this data, and the shares of the population for each age year, described in Appendix A, it is possible to obtain the contribution of changing population shares for the years 1950-1970 and 1950-2000 using equation 2. We use these as an approximation for the changes occurring between 1948 and 1970 and between 1948 and 2000, as there is not data for the year 1948. Comparisons to the model’s results from 1950-1970 and 1950-2000 produce very similar results. Totals do not exactly sum because of rounding.

### Table 5: Contribution of Age Demographic Changes (Individual Age Year Level) to Percentage Change in Hours Worked, 1948-1970

<table>
<thead>
<tr>
<th>Model</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-8.8</td>
<td>-20.1</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-1.7</td>
<td>-10.9</td>
</tr>
<tr>
<td>Demographics</td>
<td>-6.9</td>
<td>-15.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-7.9</td>
</tr>
<tr>
<td>Labor Supply</td>
<td>-1.9</td>
<td>-4.4</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-1.7</td>
<td>-3.0</td>
</tr>
<tr>
<td>Total</td>
<td>-11.5</td>
<td>-26.0</td>
<td>-3.1</td>
<td>-3.9</td>
<td>-5.8</td>
<td>-9.6</td>
</tr>
<tr>
<td>Demographics</td>
<td>-4.8</td>
<td>-5.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-4.1</td>
</tr>
<tr>
<td>Labor Supply</td>
<td>-6.7</td>
<td>-21.2</td>
<td>-3.1</td>
<td>-3.9</td>
<td>-5.8</td>
<td>-5.5</td>
</tr>
</tbody>
</table>

**Frac. Explained by Labor Supply:**

<table>
<thead>
<tr>
<th></th>
<th>of Total</th>
<th>0.17</th>
<th>0.17</th>
<th>0.32</th>
<th>0.28</th>
<th>0.29</th>
<th>0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>of Labor Supply</td>
<td>0.28</td>
<td>0.21</td>
<td>0.32</td>
<td>0.28</td>
<td>0.29</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

See notes to Table 4.
Table 6: Percentage Change in Intensive and Extensive Margins of Hours Worked (Holding Demographics Fixed), 1948-2000

<table>
<thead>
<tr>
<th>Model</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-4.9</td>
<td>-9.3</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-7.9</td>
</tr>
<tr>
<td>Extensive</td>
<td>-1.7</td>
<td>-6.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-5.5</td>
</tr>
<tr>
<td>Intensive</td>
<td>-3.2</td>
<td>-2.8</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-15.7</td>
<td>-28.6</td>
<td>-10.7</td>
<td>-10.9</td>
<td>-12.0</td>
<td>-24.3</td>
</tr>
<tr>
<td>Extensive</td>
<td>-10.9</td>
<td>-12.1</td>
<td>-3.4</td>
<td>-5.6</td>
<td>-7.1</td>
<td>-28.0</td>
</tr>
<tr>
<td>Intensive</td>
<td>-4.8</td>
<td>-16.5</td>
<td>-7.3</td>
<td>-5.3</td>
<td>-4.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

**Frac. Explained:**

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive Margin</td>
<td>0.16</td>
<td>0.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>Intensive Margin</td>
<td>0.67</td>
<td>0.17</td>
<td>0.47</td>
<td>0.66</td>
<td>0.73</td>
<td>-0.62</td>
</tr>
</tbody>
</table>

Data limitations complicate computing the contribution of population changes to the decline in extensive and intensive margins of labor supply. Thus, we assume that demographic change affects these two margins symmetrically. We compute the contribution of each margin to the total decline in hours worked and then subtract off half the contribution of demographic change from this figure. Attempts to more precisely pinpoint the separate impact of demographic change on each margin in micro data yield very similar results. Details of how the contribution of demographic change is computed are available in the notes to Table 4. Totals do not exactly sum because of rounding.

Table 7: Percentage Change in Hours Worked (Holding Demographics Fixed) Coming From Taxes and Transfers Separately, 1948-2000

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-4.9</td>
<td>-9.3</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-7.9</td>
</tr>
<tr>
<td>Tax Changes</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-2.4</td>
</tr>
<tr>
<td>Transfer Changes</td>
<td>-4.0</td>
<td>-8.0</td>
<td>-2.7</td>
<td>-2.8</td>
<td>-3.1</td>
<td>-6.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-15.7</td>
<td>-28.6</td>
<td>-10.7</td>
<td>-10.9</td>
<td>-12.0</td>
<td>-24.3</td>
</tr>
</tbody>
</table>

**Frac. of Data Explained:**

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Only Taxes</td>
<td>0.07</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>Using Only Transfers</td>
<td>0.26</td>
<td>0.28</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>0.27</td>
</tr>
</tbody>
</table>

We vary taxes and transfers separately by allowing one policy to change while holding the other fixed at its level for the 1940 cohort.
Table 8: Percentage Changes in Hours Worked from Model Simulations with Modified Tax/Transfer Rates, 1948-2000

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>Fixed Dem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agg.</td>
<td>16-24</td>
<td>25-34</td>
<td>35-44</td>
<td>45-54</td>
<td>55+</td>
<td>Agg.</td>
<td>Agg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>-4.9</td>
<td>-9.3</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-3.6</td>
<td>-7.9</td>
<td>-6.4</td>
<td>-4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. Taxes</td>
<td>-3.8</td>
<td>-7.0</td>
<td>-2.7</td>
<td>-2.8</td>
<td>-2.9</td>
<td>-6.0</td>
<td>-5.4</td>
<td>-3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. Trans.</td>
<td>-5.8</td>
<td>-23.2</td>
<td>-2.8</td>
<td>-3.3</td>
<td>-3.5</td>
<td>-9.4</td>
<td>-7.9</td>
<td>-5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Trans.</td>
<td>-10.4</td>
<td>-24.8</td>
<td>-2.9</td>
<td>-4.3</td>
<td>-5.7</td>
<td>-38.3</td>
<td>-12.3</td>
<td>-9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We modify tax and transfer rates using the detailed composition of the generational accounts for the birth cohort born in 1995, reported in Gokhale, Page, and Sturrock (1999). We then assume that the fraction of taxes due to non-labor taxes (everything but payroll and labor income) is constant over time and subtract this value from the tax rate. For transfers, we assume that the fraction of transfers due to educational expenditures is also constant over time, and add this fraction to the transfer rate. For results in the full rebate transfer simulation, the underlying wage profile is smoothed with an HP filter (6.25) to avoid multiple entry/exit dates in late ages due to a slight non-monotonicity in the wage profile around age 58.

Table 9: Log-log Regressions of Male Hours per Person on Tax Wedges from Generational Accounts and Ohanian, Raffo, and Rogerson (2008)

<table>
<thead>
<tr>
<th>Dep Var: Hours per Person</th>
<th>All Ages</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Generational Accounts</td>
<td>-0.54***</td>
<td>-0.53**</td>
<td>-0.30***</td>
<td>-0.18***</td>
<td>-0.01</td>
<td>-1.06***</td>
<td>-0.87***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.10)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.10)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Conventional Tax Wedge</td>
<td>0.25***</td>
<td>-0.01</td>
<td>0.10</td>
<td>-0.05**</td>
<td>-0.29***</td>
<td>0.77***</td>
<td>1.06**</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.17)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.17)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.98</td>
<td>0.98</td>
<td>0.71</td>
<td>0.58</td>
<td>0.59</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>$N$</td>
<td>2444</td>
<td>369</td>
<td>410</td>
<td>410</td>
<td>406</td>
<td>393</td>
<td>456</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.
Figure 1: Hours Worked Per Person for Men in the United States, 1948-2014

Annual hours worked are obtained based on estimates of weekly hours worked multiplied by 52. Further details regarding measurement are available in Appendix A.

Figure 2: Gross Lifetime Tax and Transfer Rates by Birth Cohort, 1900-1995

Gross tax and transfer rates are obtained by polynomial interpolation. Starred points represent the original tax and transfer rates in Gokhale, Page, and Sturrock (1999)
The solid line presents the life cycle wage profile calibrated to match the hours per worker data for the 1935-1945 cohorts. The wage at age 16 is normalized to 1. The dashed line is the reservation wage faced by the 1940 cohort.

Data on taxes and transfers begin only in 1900. These series assume that there are no changes in hours worked for those aged 55 through 64 until 1960 and no such changes for men 65 and older until 1970.
The y-axes denotes hours worked per person, where hours worked is normalized to 1 in the year 1948. See notes to Figure 4.
Figure 6: Contributions of Broad Demographic Changes to Hours Worked

The dash-dotted line shows the evolution of hours worked from the model where the share of the population in each age bin is held fixed; the dotted line shows the evolution of hours worked from the model solely coming from changes in distribution across age bins. Details of this decomposition available in the text.
Figure 7: Contributions of Detailed Demographic Changes and Policy Changes to Hours Worked

The dash-dotted line shows the evolution of hours worked from the model where the share of the population in each individual age is held fixed, and represents changes solely arising from policy; the dotted line shows the evolution of hours worked from the model solely coming from changes in the full age distribution of the population.
The Ohanian, Raffo, and Rogerson (2008) tax wedge is plotted on the right y-axis; all generational accounts policy figures are plotted on the left y-axis. The plot for the Ohanian, Raffo, and Rogerson (2008) tax wedge is identical in all cases. The top panel compares it to the total tax wedge from generational accounts, the middle panel to the average gross tax rate from generational accounts and the bottom panel to the average gross transfer rate from generational accounts.
Appendix A: Data Sources and Measurement

The data we use comes from the BLS compilation of monthly Current Population Survey data from 1948-2014, microdata from the decennial Census from 1940-1960, and the March Supplement to the CPS from 1962-2014, obtained from IPUMS (Flood et al. (2015), Ruggles et al. (2015)). All data is restricted to observations on men only.

The main series of interest is hours per population by detailed age group and year. There is no pre-existing source of data for these for the entire postwar period, so we construct them by combining data on employment per person and hours per employed person. For aggregation purposes, we are also interested in measuring the fraction of the male population in each group across time. Our methodology extends upon that of McGrattan and Rogerson (2004), who are interested in similar data, but only collect it by decade.

Measuring Employment Per Population

The Bureau of Labor Statistics compiles data from the monthly Current Population Survey on employment and population by gender for the age groupings 16-17, 18-19, 20-24, 25-34, 35-44, 45-54, 55-64, and 65+. This data is available from 1948 to the present. We aggregate the monthly data to an annual frequency by averaging. These data are used to construct the hours per population series in the aggregate and for the age groups, 16-24, 25-34, 35-44, 45-54, and 55+.

In Section 5.2, we decompose changes in hours worked into demographic changes and within age group changes at a much more detailed level than is available in the BLS data - individual age years. We use data from the 1950 Census and the CPS from 1962-2014 to construct employment per person for individual ages across time. We restrict the data to men 16 or older who are in the non-institutionalized civilian population and omit observations with imputed hours worked.
Measuring Hours Per Worker

To generate hours per population for age groups and in the aggregate, we need data on average hours per worker. In both the Census and the CPS, survey respondents report their hours worked for the prior week. We assume that this response provides a measure of the average hours per week in a given year. Since 1978, respondents in the CPS report their usual hours worked for the prior year which gives a potentially more accurate measure. However, since we combine this data with monthly employment status, using the past week’s hours worked is more consistent with our measure of employment per population.

Hours per worker are thus measured from these data sources, with identical sample restrictions as those described above for employment per population. For the Census data in 1960, respondents only report their hours worked in the past week in a broad interval. We use detailed hours data from 1950 to impute the average hours worked within each interval to obtain a more accurate measure of hours worked in 1960. However, this still leaves gaps in the data for the years 1948-1949, 1951-1959, and 1961. We thus interpolate hours worked per worker based on data in 1940, 1950, 1960, and 1962-1965 at the age group level consistent with the data from the BLS using a third order polynomial to obtain measures of hours per worker for these missing years.45

Measurement of hours per worker at the individual age year level is also conducted in this way for the decomposition of intensive margin changes in labor supply in Section 5.3. We also use this data on hours per worker to construct the baseline wage profile and use data on the cohorts born between 1935-1945 to construct an approximate average profile centered around the 1940 cohort, for which we have the most data.

45For hours per worker used to construct age grouping totals and the aggregate, we also scale hours per worker from the Census to be consistent with CPS values based on the observed discrepancy in the 1970 Census and CPS results. This difference arises because of sampling and weighting schemes. This adjustment is not material for the results, nor is it sensitive to the Census or CPS year.
Measuring Hours Per Population

Hours per population for age groups and birth cohorts at an annual frequency are the product of employment per person and hours per employed person.

Measuring Population Shares

The share of the male population at each age in each year is needed for aggregating the model’s output and for exercises decomposing the contribution of demographic change. Data on population weight by age group is available from the BLS data from 1948-2014, but only by decadal age group. Thus, we use the Census and CPS microdata to construct these population shares for the years 1950, 1960, and 1962-2014. We then linearly interpolate changes in shares while scaling them to match the shares observed by decadal age group in the BLS data. As top coding of ages has changed over time, we scale individual year population weights for ages 65-80 to match the total share of the population in the 65+ age group.
Appendix B: Evidence on Female Labor Supply and Male Hours Worked

Perhaps the decline in male labor supply is related to the simultaneous rise in female labor since 1948. Figure B.1 shows the changes in male and female labor force participation. While our paper focuses on hours worked, we begin by analyzing these simultaneous trends as (1) this is the outcome studied in Juhn (1992) and (2) while not reported, the entire decline in the extensive margin of male labor supply is driven by this decline in male labor force participation.

There might be a connection between male and female labor force trends, but Juhn (1992) casts doubts on the idea that this connection is on the supply side. She argues that female employment in households with male non-participants has not risen at all over that period and also that earnings for those females have increased far less than for women at large. Using data from the March CPS, we corroborate these findings in Figures B.2 through B.4. Figure B.2 shows the decline in male labor force participation opposite the change in hours worked by women in households with male non-participants. While there has been an increase in the hours worked by these women, it begins in the 1980s, well after most of the decline in male labor force participation. Eckstein and Lifshitz (2011) shows that the rise in female labor supply has been concentrated among married women. Hence, we analyze hours worked by married women in households with married male non-participants in Figure B.3. The timing of the rise in the hours worked by these women is even later, not beginning until nearly the 1990s. Finally, Figure B.4 compares the increase in earnings for all women with the increase in earnings for women in households with male non-participants. Although incomes have risen for women in households with male non-participants, the timing again does not align with the decline in male labor force participation.

We also present evidence on the decline in hours worked per person for married and non-married men from the March CPS. If there are changes in the costs and returns to market work for women, we might expect to see different trends in the hours worked by married and non-married

46 Data is on the population 16 and older. Incomes are deflated using the price index for personal consumption expenditures.
men, as the labor supply of the latter would be less affected by these trends.\textsuperscript{47} To the contrary, Figure B.5 shows the decline in hours worked from 1962-2014 for married and non-married men and finds that the declines are nearly identical. Incorporating observations from the 1950 Census, hours worked per person for married men fell by 12.1\% and hours worked per person for non-married men fell by 14.7\%. The declines are very similar for both groups.

While changing trends of women’s participation in the workforce may have affected male labor supply decisions, all this evidence seems to suggest that the decline in male hours worked since 1948 is not linked to the increase in women’s supply of labor.

---

\textsuperscript{47}While it is possible that non-married men may be cohabitating with women and thus also subject to these changes, the prevalence of cohabitation is much more recent phenomenon and unlikely to affect more than a small group of men over the pre-1980s period, where most of the decline is observed.
Figure B.2: Male Labor Force Participation and Hours per Woman in Households with Non-participating Males

Data is from the March CPS.

Figure B.3: Male Labor Force Participation and Hours per Married Woman in Households with Non-participating Married Males

Data is from the March CPS.
Figure B.4: Average Real Incomes for All and Married Women, Total Average and for those in Household with Non-Participating Males

Data is from the March CPS. Real incomes are computed by dividing by the price index for personal consumption expenditures.

Figure B.5: Hours Per Person for Married and Non-Married Men

Data is from the March CPS. Hours per person (per week) for married men is 35.6 in 1962; for non-married men it is 26.8.
Appendix C: Labor Disutility Parameter Robustness

In this Appendix, we present several robustness checks on our primary results. We consider variation in the values for $\gamma$, which impacts intensive margin labor disutility, and $\chi$, which impacts extensive margin labor disutility.

Our baseline calibration assumes that the intensive margin labor disutility parameter, $\gamma$, is equal to 1. Table C.1 presents the model’s results by age group for fixed demographic declines for different values of this parameter. The model’s overall performance is largely unchanged for a reasonable range of values for $\gamma$, but declines by age group vary widely based on $\gamma$. With a lower values of $\gamma$, agents have a greater elasticity of labor supply when they do work. Hence, changes in taxes induce greater changes in hours worked for prime-aged males when $\gamma$ is lower.

Our baseline calibration chose $\chi$, the fixed cost of working, to generate a working life of 44 years for the 1940 cohort. Table C.2 shows robustness to varying the working life target used for calibrating $\chi$. Variation in $\chi$ has minimal impact for the aggregate results. On the other hand, different values of $\chi$ have different implications for changes in hours worked across age groups. The reason for this is clear when observing the wage profile shown in Figure 3. As $\chi$ varies, so do the cutoff years for entering and exiting the labor market. The model’s results for the young and the old depend on the steepness of the wage profile around that cutoff date. If the wage profile is particularly steep (for example for ages 19-20, where the cutoff is in the baseline), then there will be greater changes in the extensive margin because the cost to adjusting the dates when the individual chooses to work relative to changing hours during other periods in life is lower.

\footnote{Note that unless the fixed cost, $\chi$, equals zero, $\gamma$ does not directly determine the Frisch elasticity in this model.}
Table C.1: Robustness of Model Results from 1948-2000 to Variation in Intensive Margin Labor Disutility Parameter, $\gamma$

<table>
<thead>
<tr>
<th>$\gamma$</th>
<th>Aggregate</th>
<th>16-24</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.46</td>
<td>0.23</td>
<td>0.68</td>
<td>0.68</td>
<td>0.63</td>
<td>0.20</td>
</tr>
<tr>
<td>0.5</td>
<td>0.38</td>
<td>0.25</td>
<td>0.54</td>
<td>0.54</td>
<td>0.50</td>
<td>0.22</td>
</tr>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.33</td>
<td>0.32</td>
<td>0.32</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.48</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>0.64</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.47</td>
</tr>
</tbody>
</table>

See notes to Table 1 and 2.

Table C.2: Robustness of Model Results from 1948-2000 to Variation in Extensive Margin Labor Disutility Parameter, $\chi$

<table>
<thead>
<tr>
<th>Work Life</th>
<th>$\chi$</th>
<th>Fraction Explained of Fixed Demographic (Age Year Level) Hours Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Life = 40y</td>
<td>0.53</td>
<td>Aggregate</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>Work Life = 42y</td>
<td>0.47</td>
<td>0.36</td>
</tr>
<tr>
<td>Work Life = 44y</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>Work Life = 46y</td>
<td>0.38</td>
<td>0.29</td>
</tr>
<tr>
<td>Work Life = 48y</td>
<td>0.33</td>
<td>0.31</td>
</tr>
</tbody>
</table>

See notes to Table 1 and 2.