Abstract

This paper develops a dynamic equilibrium model of decentralized asset markets with both search delays and endogenous bargaining delays arising in the limit of almost public information about the asset quality. The model has several implications for liquidity and prices. First, conditional on the public information, the liquidity is U-shaped in the quality and assets in the middle of the quality range may not be traded at all. Second, search and bargaining frictions have opposite effects on the market liquidity showing that transparency, while welfare improving, may also hurt the market liquidity. Third, the substitutability of different asset classes leads to flights-to-liquidity during periods of market uncertainty and reveals adverse effects of gradual transparency policies. Finally, the paper derives the effect of asset liquidity, market liquidity and market tightness on asset prices.

Keywords: search friction, trade delay, liquidity, asset prices, over-the-counter markets, transparency, flight-to-liquidity, private information
1 Introduction

Many important asset markets are decentralized. Examples include over-the-counter (OTC) markets for commercial and residential real estate, asset-backed securities, derivatives, corporate and municipal bonds, credit-default swaps, private equity, sovereign debt and bank loans. Unlike in centralized exchanges, in such markets there are no market prices at which assets can be freely bought and sold. Instead, asset prices are determined via bilateral bargaining. Thus, not only the price, but also the time it takes parties to agree on this price are important dimensions of market transactions.

This paper studies the effect of the negotiation delays on market dynamics and efficiency in a general dynamic equilibrium model of decentralized asset markets. I consider the canonical search-and-bargaining model of decentralized markets à la Duffie, Gârleanu and Pedersen (2005) in which agents share risks by trading assets in the market with the search friction. In the canonical model, once agents meet, they trade immediately and split the surplus proportionally according to the Nash (1950) bargaining solution. The novelty of my approach is in the endogenous bargaining delays captured by the screening bargaining solution. A companion paper Tsoy (2015) shows that this solution concept reflects bargaining delays that arise when both parties have private information about the asset quality which is infinitely more precise compared to the public information. Specifically, I take the almost public information limit of the bargaining model as the precision of the private information goes to infinity, while holding the precision of the public information fixed.\footnote{This terminology comes from the epistemic literature (Aumann 1999) where the public information establishes common knowledge among agents. As the private information of parties becomes more precise, values become almost common knowledge, thus, the term almost public information limit.} In this limit, negotiation delays are determined by the amount of public information about the asset quality.

This approach is conductive in several respects. First, I show that it captures the realistic two-sided screening dynamics of the negotiation in which the buyer continuously increases his price offers starting from the ask price and the seller continuously decreases her price offers starting from the bid price, until one of the sides accepts the offer of the opponent. Second, it allows the tractability of the analysis. I solve for the unique steady-state equilibrium of the economy with a continuum of assets. The negotiation delays are determined in equilibrium by agents’ endogenous valuations which in turn depend on the ability to sell quickly the asset in the future as well as the steady-state distribution of assets among agents in the economy. Third, the gap between the public and private information captured by my approach is relevant in many OTC markets. Such markets are know to be...
opaque and only a limited amount of information about assets is public, while agents are sophisticated in evaluating assets.2,3 Finally, Tsoy (2015) shows that the trade dynamics captured by the screening bargaining solution is persistent in the bargaining model for a variety of precisions of the private information ranging from equally precise to infinitely more precise than the public information. This suggests that the insights obtained in this paper are relevant even out of the limit, when the agents’ private information is noisy.

The analysis provides several new predictions and policy implications. In equilibrium, not all assets are necessarily traded which allows the distinction between two trade margins: extensive (whether the asset is traded or not) and intensive (asset-specific negotiation delays). On the intensive margin, the novel testable implication is that the asset liquidity, captured by the real costs of the bargaining delay, is U-shaped in quality conditional on the public information about the asset. This pattern arises from the two-sided screening dynamics of the negotiation in the screening bargaining solution. The buyer of a high quality asset and the seller of a low quality asset are willing to accept early on an offer close to the bid and ask price, respectively, rather than wait for more favorable offers. At the same time, owners and buyers of assets in the middle of the quality range have incentives to delay trade to hold out for a more favorable price offer. This prediction is in contrast to the adverse selection models of asset trade, in which lower asset qualities are more liquid, and is consistent with the non-monotone liquidity pattern in the real estate market (see Yavas and Yang, 1995).

The extensive trade margin arises because of the buyers’ option to continue the search for a different asset. In equilibrium, they follow a simple threshold strategy and “shop” for assets with the shortest negotiation times. In conjunction with the U-shaped liquidity pattern, this implies that a range of asset qualities in the middle may not be traded at all. For such assets, it takes parties too long to agree on the price, and buyers prefer to reject such assets and continue their search for an asset whose price takes less time to negotiate. The presence of the extensive trade margin shows that trade delays are relevant even in markets where search and bargaining delays are normally short, e.g. corporate bonds

2The Committee on the Global Financial System (2005) gives the following account of the OTC trade: “Interviews with large institutional investors in structured finance instruments suggest that they do not rely on ratings as the sole source of information for their investment decisions ... Indeed, the relatively coarse filter a summary rating provides is seen, by some, as an opportunity to trade finer distinctions of risk within a given rating band. Nevertheless, rating agency ‘approval’ still appears to determine the marketability of a given structure to a wider market.”

3Downing, Jaffee and Wallace (2009) documents that even in primary markets, asymmetric information between the originator of the MBS and the investor is both present and statistically significant, however, the absolute magnitude of its effect on transactions costs and prices is small.
market, and hence, seemingly should not have a significant effect on liquidity. In such markets, short observed negotiation delays can imply that a range of assets is rejected by buyers, as they take too long to negotiate, which essentially makes them illiquid.

The analysis of both forms of delay allows the distinction between two trade frictions in decentralized markets: the search friction which is reflected in the ability of market participants to find a trading opportunity and the bargaining friction which is reflected in the ability of market participants to promptly negotiate the price once an opportunity is identified. The existing literature focuses solely on the search friction which is sometimes thought of as a reduced form for both trade frictions. I show that this view is only partially justified. First, the limit trade delays generated by only search or only bargaining frictions are quite different. Conditional on the trade taking place, the former leads to stochastic delays for both sides (as in Duffie et al. 2005), while the latter leads to deterministic delays for sellers of actively traded assets and stochastic delays for buyers. Second, on the intensive margin, the two frictions are indeed similar: an increase in the bargaining friction leads to an increase in the average bargaining delay. However, on the extensive margin, the two frictions have opposite effects on the market liquidity captured by the range of asset qualities always accepted by buyers.

Due to the properties of the screening bargaining solution, the bargaining friction in my model is determined by the quality of the public information about assets. For example, during periods of heightened market uncertainty, the infrequently updated credit ratings become less reliable in assessing the risks associated with the asset, and hence, the bargaining friction increases. An increase in the bargaining friction leads to a larger bid-ask spread and longer negotiation delays. This results in a decrease in the market liquidity, as agents prefer to trade fewer assets for which the negotiation times do not increase significantly. In the recent financial crisis, the significant increase in downgrades of financial products (see Benmelech and Drugosz, 2010; Ashcraft, Goldsmith-Pinkham, and Vickery, 2010) indicates an increased quality heterogeneity of assets conditional on the public information. In line with my model, it was accompanied by the dried-up liquidity.

On the contrary, an increase in the search friction lowers the market liquidity. As it becomes easier to search for assets in the market, buyers prefer to reject more assets and accept for trade only the most liquid assets. The opposing effect of search and bargaining frictions on the market liquidity shows that transparency, although welfare improving,

4 Duffie (2012) states that “[s]earch delays ... proxy for delays associated with reaching an awareness of trading opportunities, arranging financing and meeting suitable legal restrictions, negotiating trades, executing trades, and so on.”
does not always improve the market liquidity. Many transparency policies are associated with both more efficient search and higher quality of public information. For example, promoting post-trade transparency through the prompt disclosure of past quotes improves the public information about assets, and thus, decreases the bargaining friction. At the same time, if agents are willing to hold only assets about which they have sufficient information, post-trade transparency expands the consideration sets of buyers, hence, shortening search delays and reducing the search friction. As a result, the overall effect of post-trade transparency on the market liquidity is ambiguous. This is consistent with the existing mixed evidence on the effect on liquidity of the post-trade transparency in the corporate bonds market (see Bessembinder, Maxwell, and Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007; Goldstein, Hotchkiss, and Sirri, 2007; Asquith, Covert, and Pathak, 2013).

In the analysis of liquidity, different assets act as substitutes for risk-sharing. In the recent financial crisis of 2007-2008, traders reacted to the increase in market uncertainty by a shift in their preferences towards safer and more liquid assets, a phenomenon known as flight-to-liquidity (Dick-Nielsen, Feldhutter, and Lando, 2012; Friewald, Jankowitsch, and Subrahmanyam, 2012). Similarly, opponents of greater transparency in OTC markets point out that it can result in the migration of trade to certain asset classes hurting the liquidity of the market as a whole.

I extend the baseline model to take into account the substitutability between asset classes. An increase in the bargaining friction for one asset class can result in flight-to-liquidity episodes wherein agents migrate to trading assets with lower bargaining friction, which exacerbates the negative effect of the increased market uncertainty on the liquidity. Interestingly, once I take into account the asset substitutability, even the reduction in the bargaining friction can have adverse effects. If the reduction is uneven across asset classes, and as a result, there is an asset class that is significantly more liquid than the rest of the market, then agents will migrate to trading assets in this class. This adversely affects the liquidity of the rest of the market and can result in an overall decrease in the market liquidity and welfare. This reveals the negative effects of gradual transparency policies. For example, the introduction of mandatory trade reporting in corporate bonds market was introduced in several stages. Asquith, Covert, and Pathak (2013) shows that this hurt the liquidity of high-yield bonds for which the post-trade transparency was introduced later than for the investment grade bonds.

Finally, I derive an intuitive decomposition of asset prices into three components: fundamental value component, liquidity premium component and average-liquidity com-
ponent. This decomposition is consistent with the empirical evidence that there is a significant non-default component in corporate spreads which depends both on the liquidity of bond and marketwide liquidity. (see, for example, Longstaff, Mithal, and Neis, 2005; Bao, Pan, and Wang, 2011). The effect of different components on asset prices is unambiguous and depends on how they affect agents’ outside options of continuing the search. Factors that improve the outside option of the seller, such as the fundamental value, asset liquidity, seller’s match intensity, increase the price, while factors that improve the outside option of the buyer, such as marketwide liquidity and buyer’s match intensity, decrease price.

Related literature This paper is related to several strands of literature. First, the paper builds on the search and bargaining model of OTC markets introduced in Duffie, Gârleanu and Pedersen (2005) and further developed to account for risk-aversion (Duffie, Gârleanu and Pedersen, 2007), unrestricted asset holdings (Lagos and Rocheteau, 2007; 2009), asset heterogeneity (Vayanos and Weill, 2008; Weill, 2008), agent heterogeneity (Vayanos and Wang, 2007; Hugonnier, Lester, and Weill, 2014; Shen, Wei, and Yan, 2015). These models use the Nash bargaining solution, and hence, implicitly assume that the asset quality is public information which implies that the trade happens immediately after agents meet. This paper contributes to this literature by considering the almost publicly information about asset quality which leads to positive negotiation delays and allows the study of the effect of endogenous negotiation delays on prices and liquidity. Importantly, I show that while on the intensive margin, negotiation delays are similar to search delays, on the extensive margin, they operate quite differently.

Second, the paper contributes to the literature exploring the relationship between the liquidity and asset quality. Dynamic asset trading models with adverse selection (Guerrieri and Shimer, 2014; Chang 2014; Kurlat 2013) predict a decreasing relationship: in order to provide incentives for sellers of lower-quality assets to reveal their quality, such assets should be more liquid. While this literature focuses on the asymmetric

5In this respect, the paper is also related to the literature on asset pricing with transaction costs which explored exogenous proportional transaction costs (Constantinides 1986; Heaton and Lucas, 1996; Vayanos 1998; Huang 2003), fixed trading costs (Lo, Mamaysky, and Wang, 2004) and exogenous bid-ask spreads (Amihud and Mendelson, 1986). Like Duffie, Gârleanu and Pedersen (2005), this paper focuses on a different type of costs, the opportunity costs of delayed trade, however, in my model the delay, rather than being exogenously given, is endogenously determined.

6There is also a growing literature that introduces the adverse selection into the Walrasian competitive equilibrium (e.g. see Guerrieri, Shimer, and Wright, 2010; Kurlat, 2015) and imperfectly competitive equilibrium (e.g. see Lester, Shourideh, Venkateswaran, and Zetlin-Jones, 2015).
information, the screening bargaining solution used in this paper is derived as the limit of the bargaining model with two-sided correlated private information. This results into a different U-shaped dependence of the liquidity on the asset quality.\footnote{He and Milbradt (2014), and Chen, Cui, He, and Milbradt (2014) analyze the feedback loop between the liquidity and default, and show that assets closer to default are associated with higher bid-ask spreads. Both the channel and the prediction is different from this paper.}

Third, the paper contributes to the theoretical literature that studies the effect of transparency on the efficiency and liquidity of OTC markets (Duffie, Dworczak and Zhu, 2015; Asriyan, Fuchs, and Green, 2015). This literature shows that higher transparency reduces the information asymmetry between agents, and hence, may lead to more efficient risk sharing and higher liquidity. This paper shows that the effect of transparency on liquidity is ambiguous depending on whether it leads to the reduction in the bargaining or search friction. It also shows that adverse effects can arise because of the asset substitutability.

Forth, the paper is related to the theoretical literature on search-and-bargaining pioneered by Rubinstein and Wolinsky (1985) most of which focuses on the case of complete information and hence immediate agreement (see Osborne and Rubinstein, 1990; Gale, 2000 for an excellent survey). Exceptions include work by Satterthwaite and Shneyerov (2007) and Lauermann and Wolinsky (2014) who study the conditions for convergence to the Walrasian outcomes in search models with incomplete information where allocations are determined by static auction mechanisms. In contrast, my focus is on negotiation delays, and because of the bargaining friction, my model does not converge to the competitive outcome even as the search friction vanishes. Another paper that explicitly incorporates trade delays into a search model is Atakan and Ekmekci (2014). In their model, agents imitate exogenously given commitment types requesting a fixed share of the surplus, while in my model all agents are rational.

Finally, the companion paper Tsoy (2015) studies bargaining over the price of a durable good with correlated private information, while this paper studies how agents use different assets to share risk. Correspondingly, values of agents, rather than being primitives of the model, are endogenously determined and reflect the transitory nature of liquidity shock and the possibility of future trade. Further, because of the option to search in the market for another asset, the present model derives both intensive and extensive trade margins.

The structure of the paper is the following. Sections 2 and 3 present and solve the model. Section 4 provides the asset pricing and liquidity implications. Section 5 shows how the substitutability of asset classes leads to flights-to-liquidity and adverse effects
of gradual transparency policies. Section 6 discusses the generality of results. Section 7 concludes and gives directions for future research. All proofs are relegated to the Appendix.

2 Model

This section describes the economy in which agents trade assets to share risks in a market with a random search. Subsection 2.1 introduces the novel screening bargaining solution. Subsection 2.2 and 2.3 define the (steady-state) equilibrium and central equilibrium quantities.

There is a continuum of agents of mass \(a > 1 \). Time \(t \geq 0 \) is continuous. There are two observable intrinsic types of agents which I call in anticipation of their equilibrium behavior buyers (\(b \)) and sellers (\(s \)).\(^8\) The intrinsic type of each agent switches independently from \(b \) to \(s \) with a Poisson intensity \(y_d \), and from \(s \) to \(b \) with a Poisson intensity \(y_u \). The initial distribution of types is stationary with a mass \(\frac{y_u}{y_u + y_d} a \) of buyers and a mass \(\frac{y_d}{y_u + y_d} a \) of sellers.

There is a continuum of asset qualities \(\theta \in [0, 1] \) each in a unit supply. Agents are risk-neutral and discount the future at the common discount rate \(r \). The flow payoff from asset \(\theta \) is \(k \theta \) for the buyer and \(k \theta - \ell \) for the seller where \(k \) and \(\ell \) are positive.\(^9\)\(^10\) The interpretation is that assets are traded within an asset class defined by the public information. Examples of such classes are mortgage-backed securities rated AAA maturing in 10 years, investment grade zero-coupon bonds with short maturities, or renovated studios in downtown area. The quality \(\theta \) is an index that aggregates various factors that affect asset payoffs and are not captured by the public information. Thus, \(k \) reflects the asset heterogeneity conditional on the public information. This interpretation of the asset quality comes from the type of bargaining delays analyzed in this paper (see the next subsection for more details). Higher asset qualities translate into higher flow payoffs for both types of agents. Sellers experience a transitory liquidity shock, and for them holding the asset is associated with additional holding costs \(\ell > 0 \). Thus, in a frictionless market, buyers would purchase assets from sellers.

Each agent is constrained to hold at most one asset. This way, I abstract from agents’

\(^8\)I will use female pronouns for sellers, and male pronouns for buyers.
\(^9\)I can normalize \(\ell = 1 \), as only the ratio \(k/\ell \) matters. I prefer to keep the separate notation for the purpose of interpretation.
\(^10\)The results on liquidity are shift invariant, so I can add an arbitrary constant \(d > 0 \) to flow payoffs to guarantee that all the prices and payoffs are positive.
portfolio decisions and focus on their risk-sharing motives. Assets are initially randomly distributed among agents. Since $a > 1$, not all agents own assets.

Agents can trade assets in a market with the search friction. There are two stages to the trading process: the search stage and the bargaining stage. Search is costless, and all unmatched agents participate in search. Searching agents are randomly matched to each other. The matching process is independent of the evolution of intrinsic types and is given by the quadratic matching technology commonly used in the search-and-bargaining literature (see e.g. Duffie et al., 2005).\footnote{Duffie and Sun (2007) provides probabilistic foundations for this matching technology.} Buyers of mass m_b contact sellers of mass m_s with intensity $\frac{1}{2}m_b m_s$, and so the total meeting rate of these two groups of agents is $\lambda m_b m_s$. The fact that the match is not instantaneous represents the search friction and the contact intensity parameter λ controls the severity of the search friction.

When a match is found, the agents involved choose whether to participate in the bargaining stage or continue the search. To rule out uninteresting equilibria where the buyer rejects the trade because she anticipates that the seller will also reject the trade, I assume that sellers always choose to participate in the bargaining stage.\footnote{In equilibrium, the seller always gets a higher utility from bargaining than from continuing the search.} The buyer can proceed to the bargaining stage with his current stage or return to the search stage by saying “yes” or “no”, respectively. I assume that the buyer can condition his strategy directly on the quality of the asset. As mentioned, the screening bargaining solution that I apply is a reduced form for bargaining between agents who get conditionally independent private signals about the quality which are infinitely more precise compared to the public information. Thus, the interpretation is that agents condition their strategies on these almost-perfect signals about the asset’s quality.

The (mixed) strategy of the buyer $\sigma(\theta) \in [0, 1]$ specifies the probability with which the buyer matched with the seller of asset θ participates in the bargaining stage. Denote by Θ_L the set of assets such that $\sigma(\theta) = 1$, and by Θ_M the set of assets such that $\sigma(\theta) \in (0, 1)$. I call assets in Θ_L unconditionally liquid or simply liquid, assets in Θ_M conditionally liquid, and assets in $\Theta_I \equiv [0, 1] \setminus (\Theta_L \cup \Theta_M)$ illiquid.

Once agents proceed to the bargaining stage, they trade an asset θ with delay $t(\theta)$ at price $p(\theta)$. I assume that once the intrinsic type of one of the matched agents switches or agents complete the trade, the match is destroyed, and agents do not participate in search while matched. I next describe in details how $p(\theta)$ and $t(\theta)$ are determined though the screening bargaining solution.
2.1 Screening Bargaining Solution

Motivated by the Nash bargaining solution and its non-cooperative foundations,13 the literature on OTC markets commonly assumes that the surplus is split proportionately without delay once the match is found. In this subsection, I introduce an alternative screening bargaining solution applied in this paper. I first define the screening bargaining solution (SBS) for a general class of bargaining problems.

Consider the following general bargaining problem described by the tuple \((\rho, v, c)\). There is a unit continuum of asset qualities \(\theta \in [0, 1]\) and for each \(\theta\), the buyer’s valuation is \(v(\theta)\) and the seller’s cost is \(c(\theta)\). In equilibrium, \(v\) and \(c\) will correspond to endogenous buyer’s gains from buying the asset and seller’s losses from selling the asset, respectively. Assume that \(v\) and \(c\) are weakly increasing, almost everywhere continuously differentiable, and the trade surplus \(\xi(\theta) \equiv v(\theta) - c(\theta)\) is positive for all \(\theta\). Time is continuous, and parties discount at rate \(\rho\). If parties trade at time \(t\) at price \(p\), then the payoff to the buyer is \(e^{-\rho t}(v(\theta) - p)\) and the payoff to the seller is \(e^{-\rho t}(p - c(\theta))\).

Before formally defining the SBS, let me first provide an intuitive description of how the SBS works out in terms of a related continuous-time bargaining game. The seller continuously decreases her price offer \(p^S_t\), and the buyer continuously increases his price offer \(p^B_t\). Both sides take the paths of offers as given, but choose the time when they accept the offer of the opponent strategically, in particular, it is conditioned on the asset quality \(\theta\). The trade happens once one of the sides accepts the price offer of the opponent. Initial price offers \(p^S_0\) and \(p^B_0\) can be viewed as the bid and ask prices, respectively. These are the prices at which each side can trade immediately. However, generally agents prefer to wait for a more favorable price offer from the opponent.

In a pure-strategy Nash equilibrium of this bargaining game, for any asset quality \(\theta\) corresponds the bargaining outcome consisting the price \(p(\theta)\) and the time \(t(\theta)\) of trade. Of course, the outcome would depend on the choice of paths of price offers \(p^S_t\) and \(p^B_t\). Let price offers be such that in the equilibrium outcome, the surplus is split proportionally. This uniquely pins down the trade delay. I call this equilibrium outcome the SBS. More formally, the SBS is defined as follows.

Definition 1. The screening bargaining solution (SBS) \((p, t)\) to the bargaining problem \((\rho, v, c)\) with the surplus split \(\alpha \in (0, 1)\) satisfies:

13Rubinstein (1982), Binmore, Rubinstein, and Wolinsky (1986) show that when the information about the quality is complete, parties split the surplus proportionally without delay as offers become frequent.
Figure 1: **Illustration of the SBS.** For an asset quality $\theta > \theta^*$, the buyer accepts the seller’s offer $p_{t(\theta)}^S = p(\theta)$ at time $t(\theta)$; for an asset quality $\theta' < \theta^*$, the seller accepts the buyer’s offer $p_{t(\theta')}^B = p(\theta')$ at time $t(\theta')$.

1. for all $\theta \in [0, 1]$,
 \[p(\theta) = (1 - \alpha)v(\theta) + \alpha c(\theta); \]
 \[(2.1) \]

2. $t(1) = t(0) = 0$ and for some θ^*:
 \[\theta \in \text{argmax}_{\theta' \in [\theta^*, 1]} e^{-\rho t(\theta')}(v(\theta) - p(\theta')), \text{ for } \theta \geq \theta^*, \]
 \[(2.2) \]
 \[\theta \in \text{argmax}_{\theta' \in [0, \theta^*]} e^{-\rho t(\theta')}(p(\theta') - c(\theta)), \text{ for } \theta \leq \theta^*. \]
 \[(2.3) \]

Condition (2.1) states that the price splits the surplus between the buyer and the seller in proportion α to $1 - \alpha$. Conditions (2.2) and (2.3) characterize the equilibrium delay in the bargaining game described above. For asset qualities above θ^*, the buyer gives in first and accepts the seller’s offer at time $t(\theta)$. Condition (2.2) ensures that for such a buyer accepting at time $t(\theta)$ is indeed optimal. Symmetrically, for asset qualities below θ^*, the seller gives in first and accepts the buyer’s offer at time $t(\theta)$ and condition (2.3) ensures optimality of time $t(\theta)$ (see Figure 1). I call this dynamics the **two-sided screening dynamics** motivated by the fact that $(t(\theta), p(\theta))$ is the screening contract for buyers of qualities $\theta > \theta^*$, and it is a screening contract for sellers of qualities below $\theta < \theta^*$.

Because in the SBS, different assets are traded at different prices, it is necessary that there is a trade delay. In a companion paper (Tsoy, 2015), I provide non-cooperative foundations for the SBS. As in Rubinstein (1982), I consider the alternating-offer bargaining game, however, instead of observing the quality $\theta \in [0, 1]$, the buyer gets a private signal $\theta_b = \theta + \varepsilon_b$ and the seller gets a private signal $\theta_s = \theta + \varepsilon_s$ where ε_b and ε_s are conditionally
independent noises. This signal structure is common in the global games literature (see, e.g., Morris and Shin, 1998). As the noise vanishes, the asset quality becomes almost public information, while the only public information about the quality is that it is drawn according to a certain distribution from [0, 1]. Values are functions of signals: $v(\theta_b)$ for the buyer and $c(\theta_s)$ for the seller.

I show that there is a sequence of perfect Bayesian equilibrium outcomes that converges to the SBS as offers becomes frequent and the noise in the signal goes to zero.14 Comparing with the analysis of the complete information game, the trade delay is impossible when the information about the asset quality is public, but it can emerge when the information is \textit{almost} public. Let me give the intuition for such a drastic difference.15 When the information about the quality is public, there is a unique split of the surplus sustainable in any continuation equilibrium. Hence, it is not possible to reward or punish players to sustain the delay. At the other extreme, when the signals are very imprecise, it is possible to sustain the two-sided screening dynamics, by specifying that if e.g. the seller speeds up or slows down the offers as compared to p_t^S, the buyer believes that the seller got a very low signal and is very desperate to trade. After such an optimistic updating, in the continuation equilibrium the buyer immediately gets the maximal share of the surplus. In Tsoy (2015), I show that for such a construction is valid even when the noise is very small. In other words, despite the fact there is an efficiency loss due to trade delay and both parties realize it, nobody wants to seem desperate and deviate from the routine of the equilibrium two-sided screening dynamics. In particular, both parties prefer adhering to equilibrium price paths and getting their share (α or $1 - \alpha$) of the smaller surplus to deviating and getting a lower share of the larger surplus in the “punishing” continuation equilibrium.

In the limit that I take in Tsoy (2015), the precision of the public information about the asset, captured by the slope of v and c, is a key determinant of the average length of negotiation. The intuition follows from the continuous-time bargaining game. If the range of v and c is large, then the difference between prices at which different assets are traded is larger and agents' incentives to wait to get a more favorable price increase leading to larger delays. In the present model, the residual heterogeneity of assets conditional on the public information is controlled by the parameter k. For example, when credit ratings

14More precisely, I consider frequent-offer limits of a class of perfect Bayesian equilibria which I call \textit{screening equilibria}. I show that such equilibria exist for any amount of noise, and under the refinement, when I take the limit first of frequent offers first and then the let the noise vanish, there is a unique equilibrium outcome that coincides with the SBS.

15For the formal argument see Tsoy 2015.
are crude or their quality decreases because of the arrival of news, the heterogeneity of assets increases, while more finely defined ratings decrease k. In practice, the assumption of the imprecise public information is relevant in decentralized markets. Credit ratings for financial assets put only crude bounds on the risks associated with the asset, and experienced traders rely only on their private information sources to further refine these bounds. Likewise, in the real estate, an experienced realtor goes beyond the public profile of the house and assesses various characteristics of the neighborhood, such as safety and demographics, to determine its value.

There are several reasons I think it is interesting to look at the SBS. One of the ultimate goals of the liquidity studies is to understand how the private information affects liquidity. In the negotiation, when agents have private information, delay is a natural screening and signaling device. However, models of decentralized markets with private information are generally very complicated, as one has to keep track of the steady-state distribution of assets. Looking at the almost public information limit on the other hand proves very tractable. Moreover, as I show in Tsoy (2015), the negotiation delays that arise in the limit are qualitatively similar to delays arising when signals about the quality are noisy. In this respect, my analysis is suggestive about what would happen even out of the limit.16 Finally, the continuous-time bargaining game that describes the SBS is a realistic description of the actual negotiations in the decentralized markets.17

The present paper applies the SBS as a reduced form for strategic bargaining. In equilibrium, there is the endogenous value of trade for the buyer $v(\theta)$ and the cost of trade for the seller $c(\theta)$ during the bargaining stage (see equations (3.7) and (3.8) below). In the bargaining stage, the match can be exogenously destroyed if the intrinsic type of one of the agents switches, so the \textit{efficient discount factor} is $\rho \equiv r + y_u + y_d$. A tuple (ρ, v, c) defines bargaining problem to which I apply the SBS to determine the price and

16In Tsoy (2015), I also construct equilibria which feature no delay as the noise vanishes. As such equilibria approximate the Nash bargaining solution when the noise vanishes, the research of Duffie et al. (2005) already describes their implications for the liquidity.

17Lewis (2011) (pp. 212-213) describes the negotiation between Morgan Stanley and Deutsche Bank over the price of subprime CDOs:

What do you mean seventy? Our model says they are worth ninety-five, said one of the Morgan Stanley people on the phone call.

Our model says they are worth seventy, replied one of the Deutsche Bank people.

Well, our model says they are worth ninety-five, repeated the Morgan Stanley person, and then went on about how the correlation among the thousands of triple-B-rated bonds in his CDOs was very low, ... he didn’t want to take a loss, and insisted that his triple-A CDOs were still worth 95 cents on the dollar.
bargaining delay in equilibrium. To guarantee that \(v \) and \(c \) are, indeed, weakly increasing, I assume that the buyer’s share of the surplus is sufficiently large:

\[
\alpha \geq \frac{yd}{r + y_d}. \tag{2.4}
\]

I additionally restrict attention to equilibria in which functions \(v \) and \(c \) are weakly increasing on \([0, 1]\) and absolutely continuous on \(\Theta_L \cup \Theta_M \). If some asset \(\theta \) is expected to trade with a significant delay, this would lead to a discontinuity in \(v \) and \(c \) at \(\theta \), which in some cases can in turn justify the longer negotiation delay. The continuity requirement on \(v \) and \(c \) rules out this sort of self-sustained illiquidity.

Lastly, let me stress the assumption that agents do not make any price offers before they proceed to the bargaining stage, and agents agree to start the negotiation or reject and continue the search by simply saying “yes” or “no” to the current match. This assumption rules out conditional offers, e.g. when the buyer threatens to leave if his offer is not accepted or the seller promises to offer a low prime if the buyer agrees to start the negotiation. This assumption can be motivated by the limited commitment of agents before the bargaining stage. It allows the separation of the bargaining stage and justifies the application of the screening bargaining solution.

2.2 Equilibrium

Now, I describe the distribution of asset holdings among agents and define the steady-state equilibrium.

Each agent can be either matched \((m)\) or unmatched \((u)\). I refer to the intrinsic type of the agent and his match status as the type \(\tau \in \{bu, su, bm, sm\} \) of the agent. The asset position of the agent \([0, 1] \cup \{\phi\}\) is the quality of the asset that the agent owns or bargains over. I use notation \(\phi \) for agents who do not own an asset and are not matched to a seller. The evolution of types and asset holdings is depicted in Figure 2. For example, consider a group of matched sellers, each of whom holds an asset of quality \(\theta \). Then the transition from this group could happen according to three possible scenarios. First, the bargaining stage is completed and the asset changes hands (bold arrows from block of matched agents in Figure 2). Second, a seller in this group recovers from liquidity shock and becomes a buyer (arrow indexed by intensity \(y_u \)). Finally, the buyer to whom the seller is matched switches intrinsic type and the match is destroyed (arrow indexed by intensity \(y_u \)).
The economy is in steady state. Denote the steady-state distribution of assets among different types of agents by $M = \{M_{\tau} \in \Delta([0,1]), \tau \in \{bm,bu,sm,su\}\}$. For example, for any measurable set $\Theta \subseteq [0,1]$, $M_{bu}(\Theta)$ gives the mass of unmatched sellers that own assets in Θ, and $M_{bm}(\Theta)$ gives the mass of matched buyers that bargains over some asset in Θ. I consider equilibria such that there exists the mass density function μ_{τ} of M_{τ}.

There are several balance conditions imposed on M. First, for any asset θ, the sum of agent positions is equal to the supply of the asset,

$$\mu_{su}(\theta) + \mu_{bu}(\theta) + \mu_{bm}(\theta) = 1. \quad (2.5)$$

Second, since all assets are in unit supply and the total mass of assets is a, the mass of agents that do not hold any asset is equal to $a - 1$,

$$M_{su}(\phi) + M_{bu}(\phi) + M_{bm}(\Theta_L \cup \Theta_M) = a - 1. \quad (2.6)$$

Third, the number of matched agents of each intrinsic type should coincide with the number of matches,

$$\mu_{sm}(\theta) = \mu_{bm}(\theta). \quad (2.7)$$

Finally, the steady-state assumption requires that there be no changes in the distribution M over time. I analyze the equilibrium of the model in steady state defined as follows.

Definition 2. A tuple (σ, M) constitutes an equilibrium if the buyer’s strategy σ is optimal given M, and M is the steady-state distribution of assets generated by σ.

Figure 2: The evolution of types and asset holdings. Bold arrows indicate transitions between types and changes in asset holding caused by bargaining, and thin arrows indicate transitions caused by the switching of the intrinsic types (intensities are written next to arrows).
2.3 Market Thickness and Trade Margins

Before proceeding to the analysis, I introduce measures of market thickness and liquidity. Let \(\Lambda_s \equiv \lambda M_{bu}(\phi) \) be the contact intensity with unmatched buyers without an asset, and \(\Lambda_b \equiv \lambda M_{su}(\Theta_L) \) be the contact intensity with sellers of liquid assets. \(\Lambda_s \) and \(\Lambda_b \) capture how easily each side of the market can find a trade partner. Both are measures of market thickness and as I will show below are closely related. By convention, I will only refer to \(\Lambda_s \) as the market thickness. Let \(F_L \in \Delta(\Theta_L) \) be the steady-state probability distribution of asset qualities in the pool of unmatched sellers of liquid assets.\(^{18}\)

I analyze two trade margins. First, the extensive margin, captured by \(\sigma(\theta) \), reflects whether the asset is actively traded in the market, i.e. always accepted for trade, or can be rejected by some buyers. To capture the extensive margin of the whole market, let \(L \equiv |\Theta_L| \) be the mass of assets in that are always accepted by buyers. I refer to \(L \) as the market liquidity; higher \(L \) means that the buyer accepts a broader range of assets for trade.

Second, the intensive margin reflects how quickly the asset gets negotiated which is captured by the quantity \(x(\theta) \equiv e^{-\rho t(\theta)} \). Then \(x(\theta) \) is the factor by which the surplus from trade of the asset \(\theta \) is dissipated due to the negotiation delay. I refer to \(x(\theta) \) as the liquidity of asset \(\theta \). The empirical counterpart of the liquidity \(x(\theta) \) is the trade volume.\(^{19}\) As I show in the Appendix, the trade volume is given by

\[
\frac{\Lambda_s \sigma(\theta) y_d}{y_u + y_d + \Lambda_s \sigma(\theta) x(\theta) y_u y_d},
\]

which is an increasing function of the liquidity \(x(\theta) \). The intensive margin for the whole market is captured by the average liquidity \(\bar{x} \equiv \frac{1}{L} \int_{\theta \in \Theta_L} x(\theta) dF_L(\theta) \) and the aggregate liquidity \(X \equiv \int_{\theta \in \Theta_L} x(\theta) d\theta \). It follows from (2.8) that when \(r \) is small compared to the intensity of shocks and recoveries \(y_u + y_d \) and the set of conditionally liquid asset \(\Theta_M \) is small, the average and the aggregate trading volumes are close to \(\bar{x} \) and \(X \), respectively.

\(^{18}\)Alternatively, one could consider assets in \(\Theta_L \cup \Theta_M \) to measure the market liquidity. Here and further, I focus on \(L \), as it allows for clearer comparative statics and simulations indicate that the difference between two measures is often very small.

\(^{19}\)The trade volume is also equal to the asset turnover, as each asset is in the unit supply.
3 Equilibrium Analysis

This section characterizes the unique equilibrium (Theorem 1). First, Lemma 1 derives the steady-state distribution M of assets among different agents. Next, Lemma 2 shows that the buyer’s optimal strategy σ has a simple threshold form. Finally, Lemma 3 uses the SBS to pin down the liquidity profile x.

3.1 Steady-State Distribution

In this subsection, I show that for a given strategy profile σ and liquidity profile x, there exists a unique steady-state distribution M, and I describe its properties. The following lemma describes $\Lambda_s, \Lambda_b, F_L$ in the unique steady-state distribution corresponding to a given strategy profile and specification of delay.

Lemma 1. For any σ, x, L and Λ_s, there exists a unique steady-state distribution M in which Λ_s is the unique solution to

$$
\frac{\Lambda_s}{\lambda} = \frac{y_u}{y_u + y_d} (a - 1) - \frac{y_d}{y_u + y_d} \int_0^1 \frac{\Lambda_s(\theta)}{y_u + y_d + \Lambda_s(\theta)} d\theta,
$$

(3.1)

Λ_b is given by

$$
\Lambda_b = \frac{\lambda y_d L}{y_u + y_d + \Lambda_s},
$$

(3.2)

and F_L is uniform conditional on $\theta \in \Theta_L$.

Lemma 1 shows that $\Lambda_s, \Lambda_b, E_L$ depend only on σ, but not on $t(\cdot)$. The result that the liquidity characteristic $t(\cdot)$ does not affect the distribution of assets F_L may be counter-intuitive at first sight, as one may expect that more liquid assets are traded more quickly and so are more abundant in the market. To see why, observe that the inflow into the group of sellers of asset θ is formed from matched sellers whose counter-party is hit by a liquidity shock and from unmatched buyers owning asset θ who are hit by a liquidity shock (see Figure 2). Both these inflows have intensity y_d. At the same time, the outflow from this group of sellers happens because of the recovery from the shock of sellers and the formation of new matches. The former has intensity y_u and the latter has intensity Λ_s, and both are again independent of $t(\cdot)$. Therefore, $t(\cdot)$ only changes the distribution of agents between those who have already completed a trade and those still bargaining but does not affect the mass of sellers in the search stage.

\footnote{Unlike Λ, Λ_b, F_L, steady-state distribution M derived explicitly in the Appendix depends on the delay profile $t(\cdot)$.}
Equation (3.1) has a natural interpretation. The left-hand side gives the mass of buyers without an asset, which in the absence of trade, equals \(\frac{y_u}{y_u + y_d} (a - 1) \). When agents are allowed to trade the mass of buyers without an asset decreases, which reflects the fact that ownership of assets becomes more efficient.

An interesting feature that follows from equation (3.1) is that if buyers accept a greater variety of assets this reduces the chances of the seller to be matched. In particular, if \(\sigma \) weakly increases for all \(\theta \), then it follows from equations (3.1) and (3.2) that \(\Lambda_s \) decreases and \(\Lambda_b \) increases. The more assets buyers accept, the more likely it is for the buyer to find a match, however, this implies more competition for sellers and for them the likelihood of forming a match decreases. Notice that this happens despite the fact that there are no search externalities, i.e. the fact that additional sellers are searching for buyers does not reduce the chances of others to be matched. The competition between sellers arises, however, for the following reason: the fact that buyers accept a wider variety of assets implies that more buyers find matches. These buyers are either busy in the bargaining stage or have already completed their trades. This reduces the number of buyers searching in the market and reduces the likelihood of a match for unmatched sellers.

3.2 Optimal Search Strategy

Now, given a steady-state distribution \(M \) and delay profile \(t(\cdot) \), I compute the optimal strategy \(\sigma \). For \(\tau \in \{bu, su, bm, sm\} \), let \(V_\tau(\theta) \) be the expected utility of an agent of type \(\tau \) owning (or bargaining over) asset \(\theta \), and for \(\tau \in \{bu, su\} \), let \(V_\tau(\phi) \) be the expected utility of an agent of type \(\tau \) owning no asset. Value functions during the search stage are determined by the following Bellman equations,

\[
\begin{align*}
 rV_{su}(\phi) &= y_u(V_{bu}(\phi) - V_{su}(\phi)), \quad (3.3) \\
 rV_{bu}(\theta) &= \pi(\theta) + y_d(V_{su}(\theta) - V_{bu}(\theta)), \quad (3.4) \\
 rV_{bu}(\phi) &= y_d(V_{su}(\phi) - V_{bu}(\phi)) + \Lambda_b \left(\mathbb{E}[V_{bm}(\theta)|\theta \in \Theta_L] - V_{bu}(\phi) \right), \quad (3.5) \\
 rV_{su}(\theta) &= \pi(\theta) + y_u(V_{bu}(\theta) - V_{su}(\theta)) + \sigma(\theta)\Lambda_s (V_{sm}(\theta) - V_{su}(\theta)). \quad (3.6)
\end{align*}
\]

The depreciation of value functions in the left-hand side of equations (3.3) – (3.6) equals the sum of flow payoffs and changes in value functions due either to switches of intrinsic types or the formation of matches. For example, consider equation (3.5). The flow payoff of the searching buyer without an asset is zero. If the buyer is hit by a liquidity shock, his value function drops to \(V_{su}(\phi) \), while if he is matched to a seller, then his value function
increases to $\mathbb{E}[V_{bm}(\theta)|\theta \in \Theta_L]$. Notice that if a buyer is matched to a seller of an asset in Θ_M, then his continuation utility is $V_{bu}(\phi)$ irrespective of whether he starts to negotiate or continues to search. Therefore, in equation (3.5), it is sufficient to consider the case when the buyer is matched to sellers of assets Θ_L, and the relevant distribution is F_L. This is however not the case in equation (3.6) which described the value function of the seller of asset quality θ. In equilibrium, such a seller strictly prefers to start the negotiation, and hence, for her the probability with which the asset that she offers for trade is accepted is important.

To determine the price of trade, I compute the benefits $v(\theta)$ from trade for the buyer of asset θ, and the costs of trade $c(\theta)$ for the seller of asset θ. Let $\hat{c}(\theta)$ be the value for the seller of asset θ from staying in the match but never selling the asset until the recovery from the liquidity shock happens, and \hat{v} be the value for the buyer from staying in the match but not buying from the current seller. Then

$$c(\theta) = -(V_{su}(\phi) - \hat{c}(\theta)), \quad (3.7)$$

$$v(\theta) = V_{bu}(\theta) - \hat{v}. \quad (3.8)$$

In the Appendix I show that the trade surplus is constant and equal $\xi \equiv \frac{\xi}{\rho}$. This follows from the fact that holding costs do not depend on the asset quality translates. By the assumption of the proportional split of the surplus, the price of trade is given by (2.1). Given the Bellman equations (3.3) – (3.6), the price of trade (2.1) and the liquidity profile x, one can find value functions and determine optimal strategies. The following lemma states that the equilibrium strategy takes the simple threshold form.

Lemma 2. The asset of quality θ is always accepted by buyers ($\theta \in \Theta_L$) whenever

$$x(\theta) > \bar{x} \equiv \frac{\Lambda_b}{\rho + \Lambda_b} \bar{x}, \quad (3.9)$$

and is always rejected whenever the inequality in (3.9) is reversed. Moreover,

$$V_{bu}(\phi) = \alpha \frac{r + y_u}{r} \xi \bar{x}. \quad (3.10)$$

From Lemma 2, buyers search for sufficiently liquid assets in the market. In fact, if not all assets are accepted for trade in equilibrium, there is a non-trivial search process occurring in equilibrium. The buyer may reject several assets before he finds a sufficiently
liquid asset for which he proceeds to the bargaining phase. The threshold of the buyer depends on the average liquidity and the ability to find liquid assets in the market. If the search is fast (Λ_b is large), then the buyer’s threshold is close to the average liquidity, i.e. the outside option of the buyer is essentially to go back to the market and get a random draw from the pool Θ_L. If the search is slow (Λ_b is small), then the buyer accepts a wide range of assets, as finding another asset entails a significant delay.

3.3 Liquidity Profile

The last step in characterizing the equilibrium is to show how profile x is determined.

Lemma 3. Either $\Theta_L = [0, 1]$ or there exist $0 < \hat{\theta} < \underline{\theta} \leq \theta^* \leq \hat{\theta} < 1$ such that $\Theta_L = [0, \hat{\theta}] \cup [\underline{\theta}, 1]$ and $\Theta_M = (\hat{\theta}, \underline{\theta})$. Moreover,

$$x(\theta) = \begin{cases} 1 - \frac{v(1) - v(\theta)}{\alpha \xi}, & \text{for all } \theta > \hat{\theta}, \\ 1 - \frac{c(\theta) - c(0)}{(1 - \alpha) \xi}, & \text{for all } \theta \leq \underline{\theta}. \end{cases} \quad (3.11)$$

3.4 Equilibrium

The next theorem combines equilibrium conditions for M, σ, x derived in the previous subsections to characterize the unique equilibrium.

Theorem 1. There exists a unique equilibrium characterized by (Λ_s, L) solving:

$$\Lambda_s \geq \frac{\lambda y_d}{\rho} \left(\frac{\xi r}{k} \left(e^{\frac{k}{L}} - 1 \right) - L \right) - y_u - y_d, \text{ with equality iff } L < 1, \quad (3.12)$$

$$L = \frac{y_u + y_d + \Lambda_s}{y_d \Lambda_s} \left(y_u (a - 1) - (y_u + y_d) \frac{\Lambda_s}{\lambda} - h(L, \Lambda_s) \right); \quad (3.13)$$

where $h(L, \Lambda_s) \equiv \int_0^{\min \left\{ \frac{\rho \Lambda_s}{(1 - \alpha) y_d} e^{\frac{k}{L}}, \left(\frac{\rho \Lambda_s}{(1 - \alpha) y_d} e^{\frac{k}{L}} \right) \right\}} \frac{(1 - s) y_d}{1 + \frac{y_u + y_d}{\Lambda_s} - \left(1 - \frac{y_u + y_d}{\rho} \right)s} ds.$

The equilibrium is characterized by the market liquidity L and the market thickness Λ_s. Let me sketch the solution of the model. Lemma 1 shows that the distribution M is pinned down by the market thickness parameters Λ_s and L as well as strategy σ and liquidity profile x. I then use Lemma 2 and 3 as well as expressions for value functions to
Figure 3: Equilibrium is determined as the intersection of the increasing curve given by equation (3.12) reflecting the optimality of strategy σ and the decreasing curve given by equation (3.13) reflecting the steady-state distribution of assets in the economy.

derive σ and x for given Λ_s and L. Therefore, the equilibrium is characterized by Λ_s and L that satisfy two requirements.

Equation (3.12) reflects the optimality of the buyer’s strategy and it produces an increasing relationship between Λ_s and L. This captures the fact that when it is easier for the seller to find trade partner, it is harder to find a trade partner for the buyer conditional on the same range of actively traded assets (see equation (3.2)) and so, it is optimal for the buyer to extend the range of acceptable assets. Equation (3.13) reflects the steady-state requirement that produces a decreasing relationship between Λ_s and L. It states that when buyers accept more assets for trade, fewer buyers are searching in the market, as more of them have already traded or are in the process of negotiation. Thus, the market thickness Λ_s decreases and it is harder for the sellers to find a trade partner. The equilibrium determination is depicted in Figure 3.

4 Main Results

This section applies the equilibrium characterization in Theorem 1 to derive asset pricing and liquidity implications. The search and bargaining frictions, although similar on the intensive margin, differ on the extensive margin. This implies that transparency policies have an ambiguous effect on the liquidity of decentralized markets. Further, because of the extensive margin, despite the short observable trade delays, search and bargaining frictions can have an important effect on the asset and market liquidity.
Asset Prices The next proposition gives the asset price decomposition into three components: the fundamental value, the liquidity premium and the average liquidity components.

Proposition 1. Prices of assets are given by

\[p(\theta) = \frac{1}{r} \left(k\theta - (r + y_d)\xi \right) + (1 - \alpha)\xi + \frac{y_d}{r} \frac{\sigma(\theta)\Lambda_s}{\rho + \sigma(\theta)\Lambda_s} x(\theta) - \frac{y_u}{r} \frac{\Lambda_b}{\rho + \Lambda_b} \xi x \right) \]

Moreover, the bid-ask spread \(p(1) - p(0) = \frac{k}{r} \).

The first component is the price if there were no opportunity to search for another asset in the market. This price captures the value of holding the asset for the seller plus his fraction of the trade surplus. The other two components reflect how the outside options created by the search market affect prices. The second component of the price depends on \(x(\theta) \) and reflects the liquidity premium. The more liquid the asset is, the higher the price the buyer is willing to pay. This effect is driven by the outside option of the seller to search in the market for another buyer. For a more liquid asset, after the new match is formed, less surplus is dissipated due to delay, which increases the outside option of the seller and hence increases the price of asset. Observe that this outside option depends on the ability of the seller to find a buyer (\(\Lambda_s \)). The more unmatched buyers in the market, the more valuable the outside option of the seller and the higher the price sensitivity to the asset’s liquidity. The fact that the sensitivity of the price to liquidity depends on aggregate market conditions was documented empirically (see Bao, Pan, and Wang, 2011; Friewald, Jankowisch, and Subrahmanyam, 2012). The third component is the effect of average (across assets in \(\Theta_L \)) liquidity in the market. This component accounts for the buyer’s outside option of finding another seller. Naturally, the outside option of the buyer is increasing in the average liquidity and pushes the price down. Therefore, the third component has a negative sign. This effect is larger the easier it is for the buyer to find a trade partner (higher \(\Lambda_b \)).

Market tightness also affects prices although not directly but through their sensitivity to asset liquidity and average asset liquidity. When the mass of searching buyers in the market is higher, it is easier for a seller to find a counter-party. Hence, the gains for the seller from holding a more liquid asset are higher, which translates into the higher sensitivity of the asset price to asset liquidity and leads to an increase in asset prices. On
the contrary, when the mass of searching sellers in the market is higher, the buyer can more easily find a seller in the market. Hence, the gains for the buyer from an increase in average asset liquidity are higher, which translates into the higher sensitivity of the asset price to average asset liquidity and a dampening of prices.

When \(x(\theta) = \bar{\pi} \) for all \(\theta \), my model reduces to Duffie, Garleanu and Pedersen (2007) which already allows us to distinguish between the default and non-default components of asset prices. Equation (4.1) further separates the liquidity premium component which varies in the cross-section of assets, and the average-liquidity component which will be shown in Section 5 to depend on the liquidity of other asset classes. Existing empirical evidence on the behavior corporate spreads suggests that the decomposition in the pricing equation (4.1) captures key components of asset prices in OTC markets. Longstaff, Mithal, and Neis (2005) shows that the default component does not explain entirely corporate spreads. The non-default component varies with liquidity measures in the cross-section of assets and depends on the marketwide liquidity in the time series analysis. While Longstaff, Mithal, and Neis (2005) does not provide a direct test of my theory, my model can be useful in explaining these effects on corporate spreads. The last two components in equation (4.1) correspond to the non-default component. While the liquidity premium component ensures the variation of the non-default component across assets, the average-liquidity component ensures the variation of the non-default component with respect to the marketwide liquidity.

Finally, notice that the bid-ask spread depends on the asset heterogeneity. When agents vary significantly in flow payoffs, the variation in prices is higher and in the SBS, the negotiation starts from offers that are farther apart.

U-shaped Liquidity Lemma 3 implies that the liquidity is U-shaped in quality. This follows from the dynamics behind the SBS. For the lowest qualities, the seller’s value of the asset as low and so, she prefers to accept a larger discount earlier rather than wait longer for more favorable offers. Symmetrically, the buyer of the highest qualities has the highest value and so, he prefers to accept a high price early on rather than wait for the lower offers from the seller. It is qualities in the middle that trade with the longest delay and hence, are less liquid. In fact, Lemma 3 implies that they may not be traded at all. Since the buyer is looking for relatively liquid assets in the market, he may prefer to continue the search rather than starting the lengthy negotiation over the price of the asset quality in the middle of the quality range.

The U-shaped prediction is the novel empirical implication of the paper and it dif-
fers from the implication of Guerrieri and Shimer (2014). They study the model with asymmetric information and discover an increasing relationship between the liquidity and default risk. This stems from the fact that in order to incentivize owners of assets to reveal their private information, assets of higher quality should be traded at higher prices but with lower probability compared to the lower-quality assets. The existing empirical literature gives a contradicting evidence about the relation between the asset quality and liquidity. Longstaff, Mithal, and Neis (2005), and Ericsson and Renault (2006) document a positive correlation between illiquidity and default risk for corporate bonds. Beber, Brandt, and Kavajecz (2009) shows that for Euro-bonds the correlation is reversed: more risky sovereign debt is also more liquid. The model in this paper reconciles this evidence within a single framework. While in general the dependence in my model is U-shaped, the shape can be significantly skewed to either side depending on the specification of the payoff function and the split of the surplus \(\alpha \) (see Online Appendix for the comparative statics with respect to \(\alpha \)).

Search and Bargaining Frictions Recall that the search friction decreases with the contact intensity \(\lambda \), and the bargaining friction increases with the asset heterogeneity \(k \). The next proposition shows how the market liquidity and average delay react to both types of frictions.

Proposition 2. Suppose the equilibrium before and after the change of parameters has \(\Theta_I \neq \phi \). The following comparative statics hold:

1. An increase in \(k \) leads to a decrease in \(L, \overline{\pi}, \overline{\pi} \), and an increase in \(\Lambda_s \).

2. An increase in \(\lambda \) leads to a decrease in \(L \) and an increase in \(\overline{\pi} \) and \(\overline{\pi} \).

To see the effect of the bargaining friction, let us first consider the case when \(k \) is close to 0. Then the differences in flow payoffs across assets are very small, and thus, various asset qualities are traded at similar prices. Therefore, there are little incentives to delay trade for a slightly more favorable offer, and negotiations are short. An increase in the asset heterogeneity \(k \) leads to the differences in prices at which assets are traded to increase. As a result, the negotiation starts from the offers that are farther apart and agents have higher incentives to delay trade and wait for a more favorable price offer. The

21The companion paper (Tsoy, 2015) derives a similar prediction in the bargaining model where \(v \) and \(c \) are exogenous. This paper in contrast shows that the U-shaped liquidity pattern is present even when \(v \) and \(c \) are endogenous, and in particular, they both determine and depend on the negotiation delays.

22See non-linear specifications in Section 6.
increase in the bargaining delays makes fewer assets attractive for trade to buyers and so, the market liquidity L drops. However, if buyers reject too many assets the search delays increase. Hence, buyers are also willing to tolerate longer negotiation delays, i.e. \bar{x} decreases. As a result, the average liquidity \bar{x} decreases. Notice that the increase in bargaining friction increases the market thickness Λ_s. This is the effect of competition among sellers for buyers. When bargaining friction is greater, fewer assets are actively traded. Therefore, a larger fraction of unmatched buyers searches for more scarce trade opportunities, which improves the match intensity for sellers.

On the contrary, an increase in the search friction leads to a higher market liquidity. When it is harder for buyers to find another sellers, the outside option of searching further in the market depreciates. As a result, buyers are willing to accept a wider range of asset qualities for trade. Recall from Lemma 3, that the buyer’s utility is proportional to \bar{x}. Proposition 2 shows that both frictions reduce the utility of buyers, while they have opposite effects on the market liquidity.

In the literature, the search friction is thought of as a reduced form for all types of frictions leading to trade delay. My analysis partially justifies this approach. On the intensive margin, the bargaining friction is similar to the search friction. An increase in the bargaining friction leads to higher average negotiation delays. However, on the extensive margin the two frictions operate quite differently. Therefore, only one type of friction cannot serve as a proxy for the other.

Vanishing Frictions In my model, I have both search and bargaining frictions and the interaction of the two produces interesting predictions for trade margins. One can see from the system characterizing the equilibrium in Theorem 1 that when the bargaining friction vanishes ($k \rightarrow 0$), the model reduces to that of Duffie, Gârleanu and Pedersen (2007). A natural question is whether the search friction is essential for negotiation delays. The next proposition shows that even when the search friction vanishes ($\lambda \rightarrow \infty$), in the limit there are non-trivial negotiation delays and some assets can be not traded. This contrasts with Duffie, Gârleanu and Pedersen (2007) where in the limit of vanishing search frictions the equilibrium is efficient.

Proposition 3. The limit of equilibria as $\lambda \rightarrow \infty$ is characterized by (Λ^*_s, L^*) solving:
\[
L^* = \frac{\Lambda^*}{\rho} \left(\frac{\xi R}{k} \left(e^{\frac{k}{\rho} L^*} - 1 \right) - L^* \right), \text{ with equality iff } L < 1,
\]
\[
L^* = \frac{y_u (a - 1) - (y_u + y_d)}{\Lambda^*_b} \min \left\{ 1, \frac{1}{(1 - \alpha) y_d} e^{\frac{k}{\rho} L^*} \right\} \frac{1 - s}{1 - s + \frac{y_u + y_d}{\rho} s} ds.
\]

Moreover, \(\Lambda_s \to \infty \), while \(\frac{\Lambda}{\chi} \to M^*_b(\phi) \in (0, \infty) \).

While Proposition 3 follows simply from taking the limit of (3.12) and (3.13), it is not immediate why buyers do not search for the most liquid (with \(x(\theta) = 1 \)) asset given that search delays are virtually zero. Proposition 3 shows that in the limit there is a shortage of sellers in the market\(^{23} \). When holders of liquid assets are hit by a liquidity shock, they almost immediately find a trade partner and start bargaining. Because of the shortage of sellers, it takes buyers some time to find an appropriate asset for trade (\(\Lambda_b \) is finite). Thus, the buyer accepts the range of asset qualities.

Transparency and News The analysis of two trade frictions adds to the debate about the effect of transparency on the liquidity of OTC markets. There is a tendency toward increasing transparency of OTC markets. In July 2002, the Transaction Reporting and Compliance Engine (TRACE) was introduced in the U.S. corporate bond market that required the public reporting of nearly all transactions with minimal delays. Recent financial crises increased the pressure for a greater transparency in other markets, such as credit derivatives and credit-default swaps. My analysis shows that the transparency has a bright and dark side.

On the one hand, such policies as more accurate and frequently updated credit ratings, introduction of benchmarks, and dissemination of past quotes, improve the quality of public information. As a result, conditional on better public information, the asset heterogeneity is reduced which decreases the bargaining friction and thus increases the market liquidity. Bessembinder, Maxwell, and Venkataraman (2006), and Edwards, Harris, and Piwowar (2007) provide empirical evidence that the introduction of TRACE improved corporate bonds liquidity and led to a decrease in transaction costs.

On the other hand, such policies as better trading platform that allow for a more efficient search and greater post-trade transparency reduce the search friction and thus lead to lower market liquidity. This of course does not mean that such form of transparency is

\(^{23}\text{Indeed, it follows from } \Lambda_b \to \Lambda^*_b \text{ that } M_{su}(\Theta_L) = \frac{\Lambda_b}{\chi} \to 0.\)
bad for welfare. On the contrary, the analysis of the welfare in Proposition 2 and numerical example show that the reduction in the search friction leads to a more efficient risk sharing. However, because of the reduction of the market liquidity, this is not a Pareto improvement and owners of assets that become illiquid are worse off from such policies.

The analysis of bargaining friction reveals that the shocks that affect the quality of public information decrease the market liquidity. In the recent financial crisis, because of the bad news from the housing market, credit ratings became less informative about the quality of mortgage-backed securities, collateralized debt obligations, and other assets.24 Downgrades of structured products coincided with dried-up liquidity of structured finance products (see Brunnermeier, 2009). This is consistent with predictions of this paper: drop in the quality of ratings lead to an increase in the bargaining friction which in turn results in the drop in the market liquidity.

Short Delays and Selling Pressure A common criticism of the search and bargaining models is that in many OTC markets, such as the corporate bonds market, the perception is that trade delays are not significant, and hence, it may be questionable how important they are for prices and liquidity. The analysis of both trade margins shows that even small trade delays can significantly impact asset prices and liquidity. The effect comes through the extensive margin. When the search delays are short, by Proposition 2, few assets are actively traded, while the average bargaining delays are also short. Thus, short observed search and bargaining delays do not mean that assets can be quickly sold.

Another question is whether it is possible that a relatively wide range of assets is rejected by buyers. My interpretation is that such assets are more sensitive to market conditions. That is, in normal times all assets are actively traded (although with varying delay), however, in times of lower liquidity, the liquidity of certain assets in the middle is impaired. As a result, on a long horizon all assets are traded at least once, but the trading activity varies because of varying sensitivity to market condition. The next proposition shows that the market liquidity drops during the times of selling pressure. I capture the selling pressure via a simultaneous offsetting increase in y_d and decrease in y_u, so that the long-run ratio of sellers in the population increases.

Proposition 4. Suppose that y_d increases and y_u decreases so that $y_u + y_d$ stays constant. Then L decreases.

Trading Activity In the next section, I study how the migration of agents between asset classes causes the market liquidity and trading activity to change. As a preliminary observation, the next proposition derives the comparative statics with respect to the number of agents \(a \).

Proposition 5. An increase in \(a \) leads to an increase in \(L \) and \(\Lambda_s \) and a decrease in \(x \).

Expectedly, when more agents participate in trading, the market liquidity \(L \) increases. Interestingly, the buyer’s strategy threshold and the buyers’ utility is decreasing in \(a \). When there are more agents, there are both more buyers and more sellers in the market. Thus, the competition among buyers for unmatched sellers of liquid assets increases, which in turn forces buyers to accept a wider range of assets. As a result, buyers’ utility goes down together with their strategy threshold \(x \), and a wider range of assets is actively traded.

5 Transparency and Flights-to-Liquidity

This section shows that the substitutability between asset classes leads to flights-to-liquidity during periods of market uncertainty and adverse liquidity effects of the gradual transparency policies.

I first extend the baseline model to two asset classes. There are two asset classes indexed by \(i = 1, 2 \), each of mass 1 and a mass \(a > 2 \) of agents. Asset classes \(i \) are characterized by their asset heterogeneity \(k_i \). The mass \(a_i \geq 1 \) of agents trading assets in each class \(i \) is determined in equilibrium so that \(a_1 + a_2 = a \). Other than that, parameters of the search-and-bargaining model are as in the baseline model in Section 2. The equilibrium in the multi-class model is defined next. Subscripts indicate equilibrium quantities for the corresponding asset class.

Definition 3. A tuple \((\sigma_i, M_i, a_i)_{i=1,2} \) is a multi-class equilibrium if \((\sigma_i, M_i) \) is the equilibrium of the baseline model with mass of agents \(a_i \) and the following conditions hold

\[
\begin{align*}
 x_1 &= x_2, & \text{if } a - 1 > a_1 > 1, \\
 x_1 &\leq x_2, & \text{if } a_1 = 1, \\
 x_1 &\geq x_2, & \text{if } a_1 = a - 1.
\end{align*}
\] (5.1)

The interpretation of condition (5.1) is that if trading assets in one of the classes brings a higher utility to the buyer, buyers will migrate into trading this asset class.
To see this, recall that the buyers’ utility of trading each asset class is proportional to strategy thresholds x_1 and x_2 (cf. Lemma 2). If both are equal, then buyers are indifferent between the two classes. If one is greater, then all agents migrate to the more preferable (for buyers) class making the other class illiquid. The equilibrium of the two-class model always exists and is unique.

Theorem 2. There exists a unique two-class equilibrium.

I next show that a flight-to-liquidity occurs as a response to an increase in the market uncertainty about one of the asset classes.

Proposition 6. Suppose that k_1 increases and/or k_2 decreases. Then the market liquidity L_1, the aggregate liquidity X_1 and the participation a_1 decrease, while L_2, X_2 and a_2 increase.

When the bargaining friction increases for the first asset class, agents migrate to trading assets in class 2 for which the bargaining friction is lower. This flight-to-liquidity exacerbates the drop in liquidity. By Propositions 2 and 5, both an increase in k and a decrease in a lead to a decrease in L. As a result, as fewer agents are trading assets in class 1, the negative effect on the market liquidity from the increase in the bargaining friction is exacerbated.

OTC markets are known to be prone to flights-to-liquidity episodes when, due to increased market uncertainty, agents shift their portfolio preferences to safer and more liquid assets. These phenomena are associated with dried-up liquidity in markets for more risky assets. Friewald, Jankowitsch, and Subrahmanyam (2012) and Dick-Nielsen, Feldhutter, and Lando (2012) show empirically that flight-to-quality episodes were observed during the recent liquidity crisis of 2007-2008.

An important observation is that the level of payoffs in each asset class does not affect the equilibrium characterization in Theorems 1 and 2, and only affects the levels of utilities and prices. Therefore, my model stresses that the flights are flights-to-liquidity rather than flights-to-quality. In particular, if asset class 1 experiences an increase in market uncertainty (k) but at the same time a decrease in the level of payoffs, e.g. a decrease in the aggregate default probability for corporate bonds, then the direction and the magnitude of the migration to trading assets in class 2 would not change. This is consistent with the empirical evidence that default risk plays a smaller role than liquidity in flights (see Beber, Brandt, and Kavajecz, 2009).

\[\text{25}\]

\[\text{25}^{\text{The analysis of flights-to-quality in Section 5 reveals that in the corporate bond market, the latter}}\]
Gradual Transparency Policies The dried-up liquidity during the recent financial crisis inspired regulators to shift trading of financial assets from OTC markets to more centralized platforms. E.g. Title VII of Dodd-Frank calls for a greater transparency of trading in credit-default swaps and credit derivatives. Before the crisis in 2002, the public dissemination of trades in the corporate bonds market was introduced through the Trade Reporting and Compliance Engine (TRACE). Interestingly, the TRACE was introduced in several phases with early phases requiring disclosure only for larger issues of investment grade bonds, and later phases expanding the requirement to high-yield bonds and other assets, such as agency-backed securities.

The analysis of the flights-to-liquidity shows that such gradualism in introducing transparency can hurt the market liquidity. More specifically, consider the following stylized model with two asset classes. I suppose that \(k_1 > k_2 \) and I interpret the first asset class as high-yield bonds, and the second asset class as investment grade bonds. Suppose that \(k_1 >> 0 \) so that \(L_1 < 1 \), while \(k_2 \approx 0 \) so that \(L_2 = 1 \). Consider the effect of the introduction of the post-trade transparency in the asset class 2. This leads to a decrease in the bargaining friction in the second asset class. Proposition 6 implies that the trading will shift into the second asset class hurting the liquidity of the first asset class. Thus, this measure will not increase the market liquidity of the second asset class (it is already 1). However, it will reduce the market liquidity of the first asset class, thus, reducing the overall market liquidity \(L_1 + L_2 \). Moreover, by Proposition 6 it will also lead to a decrease in the aggregate liquidity \(X_1 \) (which captures the trading volume) in the first asset class. Asquith, Covert, and Pathak (2013) shows that the introduction of TRACE while decreasing the price dispersion, also decreased the trading activity in high-yield bonds which is consistent with the mechanism described above.

6 Extensions

This paper focuses on the effect of endogenous bargaining delays on the liquidity and prices. To capture the endogenous bargaining delays in a tractable way, I apply the screening bargaining solution and restrict attention to linear flow payoffs, the size of the holding costs that does not depend on the asset quality, and equal supply of each asset quality. In this section, I discuss the generality of my results.

There are several reasons to consider more general payoff specification. Post-search component would decrease asset prices of all bonds with the improvement in the liquidity of the Treasure market, a regularity confirmed empirically in Longstaff, Mithal, and Neis (2005).
delays can arise for a variety of other reasons including asymmetric information about the quality, pre-trade evaluation of assets, work-up procedures, gradual execution of the deal to maintain the privacy, time it takes to raise financing for the deal. Further, one can argue both that more risky assets are associated with higher gains from trade (e.g. agents holding toxic assets are especially eager to sell them) and that higher-quality assets are associated with higher benefits for the holder (e.g. such assets can be used as collateral for cheaper short-term borrowing).

Suppose that flow payoffs of the buyer and the seller are given by general functions \(\pi \) and \(\psi \), respectively. Functions are assumed to be strictly increasing and continuously differentiable such that \(\pi(\theta) > \psi(\theta) \) for all \(\theta \). Denote by \(\ell(\theta) \equiv \pi(\theta) - \psi(\theta) \) the holding costs that can vary with \(\theta \). Also suppose that in the bargaining stage trade happens with delay \(t(\theta) \) which can be either exogenous or be determined in equilibrium by some mechanism. I also assume that the supply of an asset quality \(\theta \) is given by \(f(\theta) \) where \(f \) is continuous and positive for all \(\theta \), with c.d.f. \(F \).

With this more general specification of payoffs, the key quantity is \(z(\theta) = \ell(\theta)/\rho \), the expected surplus from trade. The interpretation is that with probability \(1 - x(\theta) \), the match is destroyed because of one of the sides switches its types and the realized surplus in the match is zero, and with complementary probability \(x(\theta) \), the surplus \(\ell(\theta)/\rho \) is realized after agents negotiate for time \(t(\theta) \). Let \(L \equiv \int_{\theta \in \Theta_L} dF(\theta) \) be the mass of liquid assets and \(\bar{z} \equiv \frac{1}{L} \int_{\theta \in \Theta_L} z(\theta)dF(\theta) \) be the average liquidity. Both the threshold form of the buyers’ strategy and the asset price decomposition generalize.

Theorem 3. The asset of quality \(\theta \) is always accepted by buyers (\(\theta \in \Theta_L \)) whenever

\[
z(\theta) > z \equiv \frac{\Lambda_b}{\rho + \Lambda_b} \bar{z}, \tag{6.1}
\]

and is always rejected whenever the inequality in (6.1) is reversed. Prices of assets are given by

\[
p(\theta) = \frac{1}{r} \left(\pi(\theta) - (r + y_d) \frac{\ell(\theta)}{\rho} \right) + (1 - \alpha) \frac{\ell(\theta)}{\rho} + \left(1 - \alpha \right) \frac{y_d}{r} \frac{\sigma(\theta) \Lambda_s}{\rho + \sigma(\theta) \Lambda_s} z(\theta) - \frac{\gamma_u}{r} \frac{\Lambda_b}{\rho + \Lambda_b} \bar{z}. \tag{6.2}
\]

Theorem 3 shows that under general payoffs, the buyers’ preferences are not guided solely by the liquidity considerations. Instead, the buyer trades off the post-search trade delay and the surplus from trade. Even when the gains from trade are large, the buyer may
reject the asset because of the high delay associated with it. In the working paper version of this paper, I prove Theorem 3 and analyze numerically the non-linear specifications of payoffs in my model as well as the model with exogenous post-search delays. Importantly, the conclusion of Theorem 3 does not depend on the particular specification of trade delay. This suggests that it can be used for the empirical test of different theories of asset-specific trade delays. For example, instead of the SBS one can use the bargaining model with interdependent values in Fuchs and Skrzypacz (2014) (or a more general version of it in Deneckere and Liang, 2006). In fact, heuristically the equilibrium of such a model can be obtained from my model by setting $\alpha = 0$ and specifying in Definition 1 that $\theta^* = 1$.\(^{26}\)

7 Conclusion

This paper develops a tractable model of decentralized asset markets with both search and endogenous bargaining delays. The key to the tractability is the application of the novel screening bargaining solution that captures bargaining delays due to the gap between the coarse public and precise private information. The analysis allows for the separation between the intensive and extensive trade margins, as well as between the search and bargaining frictions. The liquidity of the asset is U-shaped in the quality and assets in the middle of the quality range may not be traded at all. While on the intensive margin, search and bargaining frictions operate similarly, on the extensive margin, they are quite different. The search friction increases, while the bargaining friction decreases the market liquidity. This shows that greater transparency can hurt liquidity if it leads to lower search frictions in the market. I also show that because of the substitutability of asset classes, the OTC markets are prone to flights-to-liquidity and gradualism in the introduction of transparency can have adverse effects for the market liquidity. Finally, I derive the asset price decomposition which holds for a variety of specifications of post-search delay.

A Appendix

A.1 Steady-State Distribution

Proof of Lemma 1. I first derive the steady-state distribution of times spent in the match. For $\theta \in \Theta_L \cup \Theta_M$ and $u \in [0, t(\theta)]$, let $G(\theta, u)$ be the mass of sellers that have spent time u negotiating

\(^{26}\)One also needs to put additional restrictions on payoff functions. In particular, Fuchs and Skrzypacz (2014) assume that $v(1) = c(1)$ (no-gap assumption).

32
the price of an asset with quality \(\theta \). During the time interval \(du \), a fraction \((y_u + y_d)du \) of matches is destroyed due to the switching of intrinsic types, and for an asset with quality \(\theta \), a mass \(\lambda M_{bu}(\phi)\mu_{su}(\theta)\sigma(\theta)du \) of agents enters the bargaining stage. Hence, the change in the mass of sellers that have spent in the match less than \(M \) is destroyed due to the switching of intrinsic types, and for an asset with quality \(\theta \), the price of an asset with quality \(\theta \) stays constant over time:

\[
\partial\mu_{su} / \partial t = (y_u + y_d)\mu_{su}(\theta)\sigma(\theta),
\]

which together with \(G(\theta, 0) = 0 \) gives:

\[
G(\theta, u) = \frac{1 - e^{-(y_u + y_d)u}}{y_u + y_d}\lambda M_{bu}(\phi)\mu_{su}(\theta)\sigma(\theta).
\]

The total mass of sellers in the bargaining stage for asset \(\theta \) is equal to \(\mu_{sm}(\theta) \) which translates into \(G(\theta, t(\theta)) = \mu_{sm}(\theta) \) or equivalently

\[
\mu_{sm}(\theta) = \frac{1 - e^{-(y_u + y_d)t(\theta)}}{y_u + y_d}\lambda M_{bu}(\phi)\mu_{su}(\theta)\sigma(\theta).
\]

Let \(\gamma(\theta) \) be the intensity with which agents leave the match. During the time interval \(du \), sellers that have already spent time \([t(\theta) - du, t(\theta)]\) in the bargaining stage complete their trades. Thus, \(\gamma(\theta) = \partial G(\theta, t(\theta)) / \partial u \) or

\[
\gamma(\theta) = \lambda M_{bu}(\phi)\mu_{su}(\theta)e^{-(y_u + y_d)t(\theta)}\sigma(\theta).
\]

Now, I derive the distribution \(M \). For \(\theta \in \Theta_I \), \(\mu_{su}(\theta) = \frac{y_d}{y_u + y_d}, \mu_{bu}(\theta) = \frac{y_u}{y_u + y_d}, \mu_{sm}(\theta) = \mu_{bm}(\theta) = 0 \) and I only consider \(\theta \in \Theta_L \cup \Theta_M \). In the steady state, \(\mu_{su}(\theta), \mu_{bu}(\theta), M_{bu}(\phi), M_{su}(\phi) \) stay constant over time:

\[
\begin{cases}
y_d\mu_{sm}(\theta) + y_d\mu_{bu}(\theta) = y_u\mu_{su}(\theta) + \lambda M_{bu}(\phi)\mu_{su}(\theta)\sigma(\theta), \\
y_u\mu_{sm}(\theta) + y_u\mu_{su}(\theta) + \gamma(\theta) = y_d\mu_{bu}(\theta), \\
y_uM_{bm}(\Theta_L \cup \Theta_M) + y_uM_{su}(\phi) = y_dM_{bu}(\phi) + \lambda M_{bu}(\phi)\int_{0}^{1}\mu_{su}(\theta)\sigma(\theta)d\theta, \\
y_dM_{bm}(\Theta_L \cup \Theta_M) + y_dM_{bu}(\phi) + \int_{0}^{1}\gamma(\theta)d\theta = y_uM_{su}(\phi),
\end{cases}
\]

where the left-hand sides are the inflows into and the right-hand sides are the outflows from \(\mu_{su}(\theta), \mu_{bu}(\theta), M_{bu}(\phi), M_{su}(\phi) \), respectively. Combining the system (A.4) with the balance con-
ditions (2.5) – (2.7) and (A.2) – (A.3), I get:

\[
\begin{aligned}
\mu_s(\theta) &= y_d + \lambda M_{bu}(\phi) \sigma(\theta) \\
\mu_{bn}(\theta) &= y_d + \lambda M_{bu}(\phi) \sigma(\theta) y_d \\
\mu_{bu}(\theta) &= y_d(y_d + \lambda M_{bu}(\phi) \sigma(\theta) y_d + y_d e^{-(y_u + y_d)t(\theta)}) (y_u + y_d)(y_u + y_d + \lambda M_{bu}(\phi) \sigma(\theta)) \ .
\end{aligned}
\]

From the forth and fifth equations in (A.5),

\[
\begin{aligned}
y_u M_{sm}(\Theta_L \cup \Theta_M) + y_u M_{su}(\phi) - y_d M_{bu}(\phi) - \lambda M_{bu}(\phi) \int_{\Theta_L \cup \Theta_M} \mu_{su}(\theta) \sigma(\theta) d\theta = 0, \\
M_{su}(\phi) + M_{bu}(\phi) + M_{sm}(\Theta_L \cup \Theta_M) = a - 1.
\end{aligned}
\]

In (A.7), subtracting the first equation from the second equation multiplied by \(y_u\), plugging in \(\mu_{su}(\theta)\) from the first line of (A.6), and making the change of variables \(M_{bu}(\phi) = \frac{M}{\lambda}\), I get the equation (3.1). The left-hand side of (3.1) is strictly increasing in \(\Lambda_s\) and the right-hand side is strictly decreasing in \(\Lambda_s\) unless \(\sigma(\theta) = 0\) for all \(\theta\) which does not hold in equilibrium. At \(\Lambda_s = 0\), the left-hand side is zero and the right-hand side equals \(\frac{y_u}{y_u + y_d} (a - 1) > 0\). Thus, equation (3.1) has a unique positive solution. This completes the characterization of \(M\). Quantities \(\mu_{su}(\theta), \mu_{bu}(\theta), \mu_{bn}(\theta), \mu_{sm}(\theta)\) are given by (A.6), \(M_{bu}(\phi) = M_s\) and \(M_{su}(\phi)\) is found from (A.7). Finally, using the expression for \(\mu_{su}(\theta)\) in the first line of (A.6), I find that \(\Lambda_b\) is given by (3.2) and that \(F_L(\theta) = \frac{\int_{[0,\theta]} \mu_{su}(\theta) d\theta}{M_{su}(\Theta_L)}\) is uniform conditional on \(\theta \in \Theta_L\) .

By definition, \(\gamma(\theta)\) gives the trade volume and since each asset is in the unit supply, it is also the asset turnover. Using (A.3) and the characterization of \(M\) above, I get that \(\gamma(\theta)\) is given by (2.8).
A.2 Analysis of Value Functions

I first express value functions through $\Lambda_s, \Lambda_b, \sigma$ and x.

Denote by U_s the utility of the seller who owns an asset and does not participate in the search market. U_s can be found from equation (3.6) by setting $\sigma(\theta) = 0$:

$$U_s(\theta) = \frac{1}{r} \left(k\theta - \frac{r + y_d}{r + y_u + y_d} \ell \right). \quad (A.8)$$

The utility of sellers of illiquid assets is given by $V_{su}(\theta) = U_s(\theta)$ for $\theta \in \Theta_I$. The next lemma simplifies equations (3.3), (3.4), (3.5), (3.6) and shows that V_{bu} and $V_{su}(\phi)$ can be expressed through $V_{bu}(\phi)$ and V_{su}.

Lemma 4. For all $\theta \in [0, 1]$,

$$V_{bu}(\theta) = \frac{k\theta + y_d V_{su}(\theta)}{r + y_d}, \quad (A.9)$$

$$V_{su}(\phi) = \frac{y_u V_{bu}(\phi)}{r + y_u}, \quad (A.10)$$

$$V_{bu}(\phi) = \Lambda_b \frac{r + y_u}{r \rho} \left(\mathbb{E}[V_{bm}(\theta)|\theta \in \Theta_L] - V_{bu}(\phi) \right), \quad (A.11)$$

$$V_{su}(\theta) = U_s(\theta) + \sigma(\theta) \Lambda_s \frac{r + y_d}{r \rho} \left(V_{sm}(\theta) - V_{su}(\theta) \right). \quad (A.12)$$

I next turn to the outcome of the bargaining stage and express value functions V_{bm} and V_{sm} of matched agents through $V_{bu}(\phi)$ and V_{su}. In Subsection 3.2, I introduced functions \hat{v} and $\hat{c}(\theta)$ as the value functions of the buyer and the seller who remain in the match and never trade with the current partner. By the definition, $\hat{c}(\theta)$ is given by the Bellman equation

$$r \hat{c}(\theta) = k\theta - \ell + y_u (V_{bu}(\theta) - \hat{c}(\theta)) + y_d (V_{su}(\theta) - \hat{c}(\theta)),$$

and so, using (A.8) and (A.9),

$$\hat{c}(\theta) = \frac{1}{\rho} (v(\theta) + y_u V_{bu}(\theta) + y_d V_{su}(\theta)) = \frac{r}{r + y_d} U_s(\theta) + \frac{y_d}{r + y_d} V_{su}(\theta).$$

Analogously, \hat{v} is given by the Bellman equation

$$r \hat{v} = y_u (V_{bu}(\phi) - \hat{v}) + y_d (V_{su}(\phi) - \hat{v}),$$

and so, using (A.10),

$$\hat{v} = \frac{1}{\rho} (y_u V_{bu}(\phi) + y_d V_{su}(\phi)) = \frac{y_u}{r + y_u} V_{bu}(\phi).$$
Therefore, functions v and c introduced in (3.8) and (3.7) are given by

\[
c(\theta) = \frac{r}{r + y_d} U_s(\theta) + \frac{y_d}{r + y_d} V_{su}(\theta) - \frac{y_u}{r + y_u} V_{bu}(\phi), \tag{A.13}
\]

\[
v(\theta) = \frac{k \theta}{r + y_d} + \frac{y_d}{r + y_d} V_{su}(\theta) - \frac{y_u}{r + y_u} V_{bu}(\phi). \tag{A.14}
\]

Observe that $v(\theta) - c(\theta) = \frac{k}{\ell}$. The next lemma expresses value functions of matched agents through x, V_{su} and $V_{bu}(\phi)$.

Lemma 5. For any $\theta \in [0, 1]$,

\[
V_{bm}(\theta) = \alpha \xi x(\theta) + \frac{y_u}{r + y_u} V_{bu}(\phi), \tag{A.15}
\]

\[
V_{sm}(\theta) = (1 - \alpha) \xi x(\theta) + \frac{r}{r + y_d} U_s(\theta) + \frac{y_d}{r + y_d} V_{su}(\theta). \tag{A.16}
\]

Proof. Given that the trade at the bargaining stage is not immediate, the utility of matched agents depends on time and for $\tau \in \{bm, sm\}$ I index $V_{\tau}(t, \theta)$ by time t. Observe that $V_{\ell m}(t(\theta), \theta) = V_{bu}(\theta) - p(\theta)$ and $V_{su}(t(\theta), \theta) = p(\theta) + V_{su}(\phi)$. Moreover, the following Bellman equation holds for $V_{bm}(t, \theta)$:

\[
rV_{bm}(t, \theta) = y_u (V_{bu}(\phi) - V_{bm}(t, \theta)) + y_d (V_{su}(\phi) - V_{bm}(t, \theta)) + \frac{\partial}{\partial t} V_{bm}(t, \theta).
\]

I solve this differential equation to get

\[
V_{bm}(t, \theta) = (V_{bu}(\theta) - p(\theta)) e^{-\rho(t(\theta) - t)} + \frac{y_u V_{bu}(\phi)}{r + y_u} \left(1 - e^{-\rho(t(\theta) - t)}\right).
\]

Using (2.1), (A.9), and $V_{bm}(0, \theta) = V_{bm}(\theta)$, I get (A.15). Symmetrically, the Bellman equation for $V_{sm}(t, \theta)$ is

\[
rV_{sm}(t, \theta) = k \theta - \ell + y_u (V_{bu}(\theta) - V_{sm}(t, \theta)) + y_d (V_{su}(\theta) - V_{sm}(t, \theta)) + \frac{\partial}{\partial t} V_{sm}(t, \theta),
\]

which has solution

\[
V_{sm}(\theta) = (p(\theta) + V_{su}(\phi)) e^{-\rho(t(\theta) - t)} + \frac{1}{\rho} (k \theta - \ell + y_u V_{bu}(\theta) + y_d V_{su}(\theta)) \left(1 - e^{-\rho(t(\theta) - t)}\right).
\]

Using (2.1), (A.9), (A.10), and $V_{sm}(0, \theta) = V_{sm}(\theta)$, I get (A.16).

Proof of Lemma 2. Combining (A.9) and (A.15), I get (3.10). The buyer prefers to trade with the seller of asset θ if and only if $V_{bm}(\theta) \geq V_{bu}(\phi)$, or combining (A.15) and (3.10), I get the condition (3.9).
It follows from (A.12) and (A.16) that for \(\theta \in \Theta_L \cup \Theta_M \) function \(V_{su} \) is given by

\[
V_{su}(\theta) = U_s(\theta) + (1 - \alpha) \frac{r + yd}{r} \frac{\sigma(\theta)\Lambda}{\rho + \sigma(\theta)\Lambda} \xi x(\theta)
\]
(A.17)

Equation (A.17) implies that \(V_{su}(\theta) > U_s(\theta) \) whenever \(x(\theta) > 0 \) and so, sellers always prefer to trade.

A.3 Solution of the Model

I first derive equilibrium strategy \(\sigma \) and liquidity profile \(x \).

Lemma 6. \(x \) is given by (3.11).

Proof of Lemma 6. I first show that (2.2) and (2.3) implies (3.11). Consider \(\theta > \theta^* \) and rewrite the maximization problem in (2.2) as follows

\[
\theta \in \arg \max_{\theta' \in [\theta^*, 1]} x(\theta')(v(\theta) - p(\theta')).
\]
(A.18)

By the envelope theorem (Milgrom and Segal (2002)), function \(x(\theta)(v(\theta) - p(\theta)) \) is absolutely continuous and at differentiability points satisfies

\[
x'(\theta)(v(\theta) - p(\theta)) - x(\theta)p'(\theta) = 0,
\]
(A.19)

or using (2.1),

\[
\frac{x'(\theta)}{x(\theta)} = \frac{v'(\theta)}{(1 - \alpha)\xi}.
\]
(A.20)

Together with the \(x(1) = 1 \), (A.20) implies (3.11). The argument for \(\theta < \theta^* \) is analogous. In this case, \(x \) is given by

\[
\frac{x'(\theta)}{x(\theta)} = -\frac{c'(\theta)}{(1 - \alpha)\xi},
\]
(A.21)

which together with \(x(0) = 1 \) implies (3.11).

Corollary 1. For differentiability points \(\theta > \theta^* \) of \(v \), \(x'(\theta) = 0 \) if and only if \(v'(\theta) = 0 \), and for differentiability points \(\theta < \theta^* \) of \(c \), \(x'(\theta) = 0 \) if and only if \(c'(\theta) = 0 \).

Proof. Follows immediately from (A.20) and (A.21).

Proof of Lemma 3. The analysis proceeds in a series of claims.

Claim 1. If \(x(\theta) = \bar{x} \) for some set \((\theta', \theta'') \), then \(\sigma(\theta) \in (0, 1) \) for almost every \(\theta \in (\theta', \theta'') \).

Proof. Suppose that \(x(\theta) = \bar{x} \), but \(\sigma(\theta) = 0 \) for \(\theta \in (\theta', \theta'') \) (the argument is identical for \(\sigma(\theta) = 1 \). By (A.17), \(V_{su} \) is strictly increasing on \((\theta', \theta'') \) and so, by (A.13) and (A.14), \(v \) and \(c \) are strictly increasing, which contradicts Corollary 1. q.e.d.
Claim 2. There exist \(\bar{\theta} \leq \theta \leq \theta^* \leq \bar{\theta} \leq \hat{\theta} \) such that \(\Theta_L = [0, \bar{\theta}] \cup [\hat{\theta}, 1] \), \(\Theta_M = (\bar{\theta}, \theta] \cup [\bar{\theta}, \hat{\theta}] \), and \(\Theta_I = (\theta, \bar{\theta}) \).

Proof. By Lemma 2, buyers accept only asset qualities with \(x(\theta) \geq \bar{x} \). By Lemma 6, \(x \) has a U-shape and so, there exist \(\bar{\theta} \leq \theta \leq \theta^* \leq \bar{\theta} \leq \hat{\theta} \) such that \(x(\theta) \geq \bar{x} \) on \([0, \bar{\theta}] \cup [\bar{\theta}, 1] \) and \(x(\theta) > \bar{x} \) on \([0, \bar{\theta}] \cup [\bar{\theta}, 1] \), which combined with Claim 1 gives the result. \(q.e.d. \)

Claim 3. \(\hat{\theta} < \bar{\theta} \) implies \(\hat{\theta} < \theta \).

Proof. Suppose to contradiction there exists \(\hat{\theta} = \theta < \bar{\theta} \). Then there is an increasing sequence \(\{\theta'_i\} \subset [0, \bar{\theta}] \) and a decreasing sequence \(\{\theta''_i\} \subset \Theta_I \) both converging to \(\theta' \). From (A.13) and (A.17), this implies that \(c(\theta'_i) > c(\theta''_i) \) while \(\theta'_i < \theta''_i \), which contradicts the monotonicity of \(c \). \(q.e.d. \)

Claim 4. \(\bar{\theta} = \hat{\theta} \).

Proof. Suppose to contradiction there exists \(\bar{\theta} = \hat{\theta} \). Then there is a decreasing sequence \(\{\theta'_i\} \subset [\hat{\theta}, 1] \) and an increasing sequence \(\{\theta''_i\} \subset \Theta_M \) both converging to \(\theta' \). Corollary 1 implies that \(\{v(\theta''_i)\} \) is constant, and so, from (A.14) and (A.17), \(\{\sigma(\theta''_i)\} \) is decreasing. On the other hand, \(\sigma(\theta'_i) = 1 \) which contradicts the continuity of \(v \) at \(\theta' \). \(q.e.d. \)

It follows from Claims 1-4 that the only possibilities are: a) \(\bar{\theta} = \hat{\theta} = \theta = \bar{\theta} \), b) \(\bar{\theta} < \theta = \hat{\theta} = \bar{\theta} \), c) \(\bar{\theta} < \theta < \hat{\theta} = \bar{\theta} \).

Lemma 7.

\[
\theta = 1 + \frac{r}{k} \alpha \xi \ln x(\theta) + \frac{y_d}{k} (1 - \alpha) \xi \frac{\Lambda_s}{\rho + \Lambda_s} (1 - x(\theta)), \text{ for } \theta \geq \hat{\theta}, \quad (A.22)
\]

\[
\theta = -\frac{r}{k} (1 - \alpha) \xi \ln x(\theta) + \frac{y_d}{k} (1 - \alpha) \xi \frac{\Lambda_s}{\rho + \Lambda_s} (1 - x(\theta)), \text{ for } \theta \leq \hat{\theta}. \quad (A.23)
\]

Moreover, \(v \) and \(c \) are strictly increasing on \(\Theta_L \).

Proof. For almost every \(\theta > \hat{\theta} \), plugging \(v'(\theta) \) from (A.14) into (A.20), I get

\[
\frac{x'(\theta)}{x(\theta)} = \frac{\bar{v}'(\theta) + y_d V_{su}'(\theta)}{\alpha \xi (r + y_d)}.
\]

By (A.17),

\[
V_{su}'(\theta) = \frac{k}{r} + (1 - \alpha) \frac{y_d}{r} \frac{\frac{\Lambda_s}{\rho + \Lambda_s} \xi x'(\theta)}{r}
\]

and so,

\[
x'(\theta) = \frac{k}{\xi r} \left(\frac{\alpha}{x(\theta)} - \frac{y_d}{r} \frac{\Lambda_s}{\rho + \Lambda_s} (1 - \alpha) \right).
\]
which together with \(x(1) = 1 \) gives (A.22). From (2.4), the denominator of (A.25) is positive.\(^{27}\) Therefore, \(x'(\theta) > 0 \) and so (A.20) implies \(v'(\theta) > 0 \).

Analogously, plugging in \(c'(\theta) \) from (A.13) into (A.21),

\[
\frac{x'(\theta)}{x(\theta)} = -\frac{r U_s'(\theta) + y_d V_{su}'(\theta)}{(1 - \alpha)\xi(r + y_d)},
\]

and using (A.24) for \(V_{su}'(\theta) \), I get

\[
x'(\theta) = -\frac{k}{\xi r(1 - \alpha) \left(\frac{1}{x(\theta)} + \frac{y_d}{r} \frac{\Lambda_s}{\rho + \Lambda_s} \right)}, \tag{A.26}
\]

which together with \(x(0) = 1 \) gives (A.23). From (A.26), \(x'(\theta) < 0 \) and so (A.21) implies \(c'(\theta) < 0 \).

It next to find conditions to determine thresholds \(\hat{\theta}, \tilde{\theta}, \theta \). By Lemma 7 and the fact that \(x = x(\hat{\theta}) = x(\tilde{\theta}) \):

\[
\hat{\theta} = 1 + \frac{r}{k} \alpha \xi \ln x + \frac{y_d}{k} (1 - \alpha) \xi \frac{\Lambda_s}{\rho + \Lambda_s} (1 - x), \tag{A.27}
\]

\[
\tilde{\theta} = -\frac{r}{k} (1 - \alpha) \xi \ln x + \frac{y_d}{k} (1 - \alpha) \xi \frac{\Lambda_s}{\rho + \Lambda_s} (1 - x). \tag{A.28}
\]

For each \(\theta \in \Theta_M \), \(x(\theta) = \bar{x} \) and so, \(c(\theta) = c(\tilde{\theta}) \) by Corollary 1. Therefore, by (A.13),

\[
V_{su}(\theta) = V_{su}(\tilde{\theta}) - \frac{r}{y_d} (U_s(\theta) - U_s(\tilde{\theta})). \tag{A.29}
\]

Using (A.17) and \(x(\tilde{\theta}) = \bar{x} \),

\[
V_{su}(\theta) - U_s(\theta) = \frac{r + y_d}{r} \left(\frac{k}{y_d} (\hat{\theta} - \theta) + (1 - \alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \xi \bar{x} \right). \tag{A.30}
\]

Threshold \(\theta \) is determined as the minimum of \(\hat{\theta} \) and the solution to the equation \(U_s(\theta) = V_{su}(\theta) \) and so, from (A.30),

\[
\theta = \min \left\{ \hat{\theta}, \tilde{\theta} + (1 - \alpha) \frac{y_d}{k} \frac{\Lambda_s}{\rho + \Lambda_s} \xi \bar{x} \right\}. \tag{A.31}
\]

This completes the description of \(x \) for given \(\Lambda_s \) and \(\bar{x} \). The next lemma determines \(\sigma \).

Lemma 8. For given \(\Lambda_s \) and \(\bar{x} \),

\[
\frac{\alpha}{x(\theta)} \geq \alpha \geq \frac{y_d}{r} (1 - \alpha) \geq \frac{y_d}{r} \frac{\Lambda_s}{\rho + \Lambda_s} (1 - \alpha).
\]

\(^{27}\)Indeed,
σ(θ) = \begin{cases}
1, & \text{if } \theta \in [0, \hat{\theta}] \cup [\hat{\theta}, 1], \\
0, & \text{if } \theta \in [\hat{\theta}, \hat{\theta}], \\
\frac{\rho}{\Lambda_s} \frac{(1-\alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \xi_x - \frac{k}{y_d} (\theta - \hat{\theta})}{(1-\alpha) \frac{\rho + \Lambda_s}{\rho + \Lambda_s} \xi_x + \frac{k}{y_d} (\theta - \hat{\theta})}, & \text{if } \theta \in (\hat{\theta}, \hat{\theta}).
\end{cases}
\tag{A.32}

\textbf{Proof.} I only need to determine } \sigma(\theta) \text{ for } \theta \in \Theta_M. \text{ It follows from (A.17), (A.30) and } x(\theta) = x:

\sigma(\theta) = \frac{\rho}{\Lambda_s} \frac{r}{r + y_d} (V_{su}(\theta) - U_s(\theta)) - \frac{r}{r + y_d} (V_{su}(\theta) - U_s(\theta)) = \frac{\rho}{\Lambda_s} \left(\frac{1-\alpha}{\rho + \Lambda_s} \xi_x - \frac{k}{y_d} (\theta - \hat{\theta}) \right).

\square

\textbf{Proof of Theorem 1.} For given } \Lambda_s \text{ and } x, \text{ I can determine equilibrium strategy } \sigma \text{ from Lemma 8 and } x \text{ from Lemma 7 where } \hat{\theta}, \check{\theta}, \text{ and } \hat{\theta} \text{ are expressed from (A.27), (A.28), and (A.31). Lemma 1 describes the steady-state distribution for given } \sigma \text{ and } x. \text{ Hence, I need to show that there is unique pair of } \Lambda_s \text{ and } x \text{ that satisfies the equilibrium.}

Lemma 10 in the Online Appendix shows that equation (3.1) implies equation (3.13). Next, I derive (3.12). Combining (3.2) and (3.9), I get

\rho \geq \frac{\lambda y_d}{y_u + y_d + \Lambda_s} \int_{x(\theta) > \underline{x}} \left(\frac{x(\theta)}{x} - 1 \right) d\theta, \tag{A.33}

which holds as equality whenever \(L < 1 \). It follows from (A.27) and (A.28) that

\[L = 1 - \hat{\theta} + \hat{\theta} = -\frac{r \xi}{k} \ln \underline{x} \tag{A.34} \]

From (A.34) it follows that alternatively the equilibrium is pinned down by the pair \(\Lambda_s \text{ and } L \). Given (A.22) and (A.23), I can explicitly calculate

\[X = \int_{x(\theta) > \underline{x}} x(\theta) d\theta = \int_{\theta}^{1} x(\theta)d\theta + \int_{0}^{\hat{\theta}} x(\theta)d\theta = \int_{\underline{x}}^{1} x \frac{d\theta(x)}{dx} dx - \int_{\underline{x}}^{1} x \frac{d\theta(x)}{dx} dx = \frac{r \xi}{k} (1 - \underline{x}) \tag{A.35} \]

and combined with (A.34) and (A.33) this gives (3.12). Therefore, equilibrium \(\Lambda_s \text{ and } L \) are pinned down by (3.12) and (3.13). Denote by \(\Lambda_{s1} \text{, } \Lambda_s \text{ as a function of } L \text{ expressed from equation (3.12), and by } \Lambda_{s2}^2, \Lambda_s \text{ as a function of } L \text{ expressed from equation (3.13). Lemma 12 in the Online Appendix shows that there is a unique solution to this system.} \square

\textbf{Proof of Proposition 1.} To get (4.1), plug functions } c \text{ and } v \text{ from (A.13) and (A.14) into (2.1) and then substitute } V_{bu}(\phi) \text{ and } V_{su}(\theta) \text{ from (3.10) and (A.17).} \square
A.4 Comparative Statics

Proof of Proposition 2. Suppose k increases. The equilibrium is characterized by (3.12) and (3.13). Consider functions Λ_s^1 and Λ_s^2 introduced in the proof of Theorem 1. Since \[
\frac{\xi r}{k} \left(e^{\frac{k}{k}L - 1} \right)' = \frac{\xi r}{k} \left(1 + e^{\frac{k}{k}L} \left(\frac{k}{k}L - 1 \right) \right) > 0,
\] Λ_s^1 is increasing in k and so, an increase in k leads to the upward shift of Λ_s^1 and as a result, to an increase in Λ_s and a decrease in L. To show that x decreases, I use (A.34) to reformulate equilibrium conditions in terms of (Λ_s, x):

\[
\begin{align*}
\Lambda_s &= \frac{\xi r \lambda u}{k \rho} \left(\frac{1}{\rho} - 1 + \ln x \right) - (y_u + y_d), \\
-\ln x &= \frac{\xi r (y_u + y_d + \Lambda_s)}{k \phi} \left(y_u (a - 1) - (y_u + y_d) \frac{\Lambda_s}{\lambda} - h(\Lambda_s) \right).
\end{align*}
\]

Let functions $\tilde{\Lambda}_s^1$ and $\tilde{\Lambda}_s^2$ by such that $\Lambda_s = \tilde{\Lambda}_s^1(\xi)$ solves the first equation in the system and $\Lambda_s = \tilde{\Lambda}_s^2(\xi)$ solves the second equation. It follows from the monotonicity of Λ_s^1 and Λ_s^2 that $\tilde{\Lambda}_s^1$ is decreasing and $\tilde{\Lambda}_s^2$ is increasing. Since the right-hand side of the first equation is decreasing in k and the right-hand side of the second equation is increasing in k, an increase in k leads to a downward shift of $\tilde{\Lambda}_s^1$ and an upward shift of $\tilde{\Lambda}_s^2$ and so, to a decrease in ξ. From (A.34) and (A.35), $\xi = \frac{1 - \frac{\xi}{\ln x}}{\ln x}$ is increasing in ξ, and so, also decreases with an increase in k.

To derive the comparative statics in λ, I express equilibrium conditions (3.12) and (3.13) in terms of variables L and $M_{bu}(\phi)$ as follows\footnote{Again I consider only cases where before and after an increase in λ, $L < 1$, as other cases are straightforward to show from (3.1).}

\[
\begin{align*}
M_{bu}(\phi) &= \frac{y_u}{\lambda} \left(\frac{\xi r}{k} \left(e^{\frac{k}{k}L - 1} \right) - L \right) - \frac{y_u + y_d}{\lambda}, \\
L &= \frac{\xi r (y_u + y_d + \Lambda_s)}{y_d M_{bu}(\phi)} \left(y_u (a - 1) - (y_u + y_d) M_{bu}(\phi) - h(\lambda M_{bu}(\phi)) \right).
\end{align*}
\]

The right-hand side of the first equation in (A.37) is increasing in L and increasing in λ, while the right-hand side of the second equation in (A.37) is decreasing in $M_{bu}(\phi)$ and decreasing in λ. Therefore, an increase in λ leads to a decrease in L and so, an increase in ξ by (A.34).

Proof of Proposition 4. Consider functions Λ_s^1 and Λ_s^2 introduced in the proof of Theorem 1. Consider an increase in y_d and a decrease in y_u so that $y_d + y_u$ does not change. This leads to an upward shift of Λ_s^1 and a downward shift of Λ_s^2, and so, a decrease in L.

Proof of Proposition 7. Since (3.12) and (3.13) do not depend on α, L and Λ_s are independent of α. From (A.27) and (A.28), θ and $\tilde{\theta}$ are decreasing in α.

Proof of Proposition 5. An increase in a leads to an upward shift of Λ_s^2 and so, an increase in Λ_s and L, and by (A.34), decrease in ξ.

41
A.5 Two-Class Extension

Proof of Theorem 2. Under the assumption of the theorem, equilibrium quantities \((\Lambda_{s,1}, \bar{x}_1)\) and \((\Lambda_{s,2}, \bar{x}_2)\) are determined by the unique solution to the system (A.36) with \(a = a_1\) and \(a = a_2\), respectively. Denote by \(\bar{x}(a)\) the equilibrium threshold of the buyer’s strategy given that the mass of agents is \(a\). Equations in the system (A.36) are continuous in parameters and so, the solution \((\Lambda_s, \bar{x})\) varies continuously with \(a\) and an increase in \(a\) leads to a decrease in \(\bar{x}\) by Proposition 5. Thus, \(\bar{x}(\cdot)\) is continuous and decreasing in \(a\). By (5.1), \(a_1\) is determined by \(\bar{x}(a_1) = \bar{x}(a - a_1)\) which has a unique solution.

\(\square\)

Proof of Proposition 6. Suppose \(k_1\) increases and/or \(k_2\) decreases. I show that as a result \(a_1\) decreases and \(a_2\) increases. Suppose to contradiction that \(a_1\) increases and \(a_2\) decreases. By Propositions 2 and 5, \(\bar{x}_1\) decreases and \(\bar{x}_2\) increases which contradicts the indifference of buyers (5.1).

\(\square\)

B Online Appendix (Not for Publication)

Lemma 9. \(\bar{\mathcal{f}}_\theta \frac{\Lambda_s \sigma(\theta)}{y_u + y_d + \Lambda_s \sigma(\theta)} d\theta = h(L, \Lambda_s)\).

Proof. Expressing \(\sigma(\theta)\) from (A.32), \(\bar{\theta}\) from (A.28), and \(\bar{\theta}\) from (A.31), I get

\[
\bar{\mathcal{f}}_\theta \frac{\Lambda_s \sigma(\theta)}{y_u + y_d + \Lambda_s \sigma(\theta)} d\theta = \int_{\bar{\theta}}^{\theta + \min\{1 + \frac{k}{\bar{x}} \ln \bar{x}, (1 - \alpha) \frac{y_d}{\rho + \Lambda_s} \frac{\Lambda_s}{\rho} \}} \left((1 - \alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \frac{\xi x - \frac{k}{y_d} \theta - \theta}{y_u + y_d + (1 - \alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \frac{\xi x - \frac{k}{y_d} \theta - \theta}{y_u + y_d}} \right) d\theta \\
= \int_0^1 \min\left\{ \frac{1 + \frac{k}{\bar{x}} \ln \bar{x}}{(1 - \alpha) \frac{y_d}{\rho + \Lambda_s} \frac{\Lambda_s}{\rho}}, 1 \right\} \frac{1 - s}{1 + \frac{y_u + y_d}{\Lambda_s} s(1 - \frac{y_u + y_d}{\rho})} ds,
\]

where in the second line I make a change of variables \(s = \frac{\frac{\Lambda_s}{y_d} \theta - \theta}{(1 - \alpha) \frac{y_d}{\rho + \Lambda_s} \frac{\Lambda_s}{\rho} \xi x} \). After expressing \(\bar{x}\) from (A.34) I get the desired conclusion.

\(\square\)

Lemma 10. Equations (3.1), (A.32), (A.27), (A.28), (A.31) imply equation (3.13)

Proof. From (3.1),

\[
\frac{\Lambda_s}{\lambda} = \frac{y_u}{y_u + y_d} (a - 1) - \frac{y_d}{y_u + y_d} \int_0^1 \frac{\Lambda_s \sigma(\theta)}{y_u + y_d + \Lambda_s \sigma(\theta)} d\theta.
\]

Expressing \(\sigma\) from (A.32),

\[
\frac{\Lambda_s}{\lambda} = \frac{y_u}{y_u + y_d} (a - 1) - \frac{y_d}{y_u + y_d} \left(\frac{\Lambda_s \Lambda}{y_u + y_d + \Lambda_s} + \int_{\bar{\theta}}^{\theta} \frac{\Lambda_s \sigma(\theta)}{y_u + y_d + \Lambda_s \sigma(\theta)} d\theta \right),
\]

42
which together with Lemma 9 gives equation (3.13).

Denote by Λ_1, Λ_s as a function of L expressed from equation (3.12), and by Λ_s^2, Λ_s as a function of L expressed from equation (3.13).

Lemma 11. Λ_s^2 is strictly decreasing.

Proof. Consider an increase in L to L' so that before and after the increase $\theta < \hat{\theta}$. It is easy to see that in this case the right-hand side of (3.13) is strictly decreasing in Λ_s and so $\Lambda_s^2(L) < \Lambda_s^2(L')$.

Now, suppose that before and after an increase in L to L', $\hat{\theta} = \tilde{\theta} > \hat{\theta}$. I use equation (A.34) to rewrite equations (A.27), (A.28), (A.31), (A.32) in terms of L as follows:

\[
\begin{align*}
\hat{\theta}(L) & = (1 - \alpha) \left(L + \frac{yd}{k} \xi \frac{\Lambda_s}{\rho + \Lambda_s} (1 - e^{-\frac{k}{\tau_s} L}) \right), \\
\hat{\phi}(L) & = \hat{\theta} + 1 - L, \\
\hat{\vartheta}(L) & = \hat{\theta} + \min \left\{ 1 - L, (1 - \alpha) \frac{yd}{k} \frac{\Lambda_s}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L} \right\},
\end{align*}
\]

\[
\Lambda_s \sigma(\theta, L) = \begin{cases}
\Lambda_s, & \text{if } \theta \in [0, \hat{\theta}] \cup [\hat{\theta}, 1], \\
0, & \text{if } \theta \in [\hat{\theta}, \hat{\theta}], \\
\rho \frac{(1 - \alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L} - \frac{k}{yd} (\theta - \hat{\theta})}{\frac{(1 - \alpha) \frac{\rho}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L} + \frac{k}{yd} (\theta - \hat{\theta})}}, & \text{if } \theta \in (\hat{\theta}, \hat{\theta}).
\end{cases}
\]

Let $\hat{\theta} \equiv \hat{\theta}(L), \hat{\phi} \equiv \hat{\phi}(L), \theta \equiv \hat{\theta}(L)$ and $\hat{\vartheta} \equiv \hat{\vartheta}(L), \hat{\vartheta}' \equiv \hat{\vartheta}(L'), \hat{\vartheta}' \equiv \hat{\vartheta}(L')$. The fact that $\hat{\theta} = \hat{\phi} > \hat{\theta}$ implies that

\[
1 - L < (1 - \alpha) \frac{yd}{k} \frac{\Lambda_s}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L}
\]

and the same inequality holds for L', as $\hat{\vartheta}' = \hat{\vartheta}' > \hat{\vartheta}'$.

Recall that $\Lambda_s^2(L)$ solves equation (B.1). I next show that after the increase in L, the integral in (B.1) increases. I first show the following claim

Claim 5. Then $\sigma(\hat{\theta} - y, L) \leq \sigma(\hat{\vartheta}' - y, L')$ for $y \in (0, 1 - L)$ with a strict inequality for $y \in (0, 1 - L')$.

Proof: Observe that for $y \in [1 - L', 1 - L)$, $\sigma(\hat{\theta} - y, L') = 1$. Now, using (B.3) and (B.5), for $y \in (0, 1 - L')$

\[
\sigma(\hat{\theta} - y, L) = \rho \xi y \frac{(1 - \alpha) \frac{\Lambda_s}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L} - 1 + L + y}{\Lambda_s \xi y \frac{(1 - \alpha) \frac{\rho}{\rho + \Lambda_s} \xi e^{-\frac{k}{\tau_s} L} + 1 - L - y}.
\]
Differentiating $\sigma(\hat{\theta} - y, L)$ with respect to L, I get

$$\text{sgn} \left(\frac{\partial \sigma(\hat{\theta} - y, L)}{\partial L} \right) = \text{sgn} \left(\frac{r \xi}{k} - 1 + L + y \right).$$

It follows from (B.6) and (2.4) that

$$1 - L < (1 - \alpha) \frac{y_d}{k} \frac{\Lambda_s}{\rho + \Lambda_s} \xi e^{- \frac{k L}{r}} < (1 - \alpha) \frac{y_d \xi}{k} \leq \frac{r \xi}{k},$$

and so, $\frac{\partial \sigma(\hat{\theta} - y, L)}{\partial L} > 0$. Thus, $\sigma(\hat{\theta} - y, L) < \sigma(\hat{\theta}' - y, L')$ for $y \in (0, 1 - L')$.

q.e.d.

Outside the interval $(\hat{\theta}, \hat{\theta})$, $\sigma(\theta, L) = 1$, and outside $(\hat{\theta}' - 1 + L, \hat{\theta}')$, $\sigma(\theta, L') = 1$. Together with Claim 5 this implies that the integral in (B.1) is larger for L' and so, the right-hand side of (B.1) strictly decreases when L increases to L'.

It follows from (B.5) that $\Lambda_s \sigma(\theta)$ is strictly increasing in Λ_s and so, the right-hand side of (B.1) is strictly decreasing in Λ_s, while the left-hand side of (B.1) is strictly increasing in Λ_s. Combined with the fact that the right-hand side of (B.1) is strictly decreasing with L, I get that $\Lambda_s^2(L) < \Lambda_s^2(L')$. \hfill \square

Lemma 12. There is a unique solution (Λ_s, L) to (3.12) and (3.13).

Proof. I show that Λ_s^1 is strictly increasing and Λ_s^2 is strictly decreasing, which implies that the solution is unique. Lemma 11 implies that Λ_s^2 is strictly decreasing. The right-hand of equation (3.12) is increasing in L, as $\left(\frac{\xi r e^{\frac{k L}{\gamma}}}{k} \left(e^{\frac{k L}{\gamma} - 1} - L \right) \right)'_L = e^{\frac{k L}{\gamma}} e^{\frac{k L}{\gamma}} - 1 > 0$. Therefore, Λ_s^1 is strictly increasing. \hfill \square

Surplus Share Here, I explore the effect of the split of the surplus.

Proposition 7. An increase in α does not change L, \underline{x} and Λ_s, but leads to an increase in $\hat{\theta}$ and $\hat{\theta}$.

Notice that even though the market liquidity does not depend on α, the composition of liquid assets depends on the split of surplus. The greater the share of the buyer, the higher the fraction of high-quality assets (above θ^*) in the set of liquid assets. The higher share of the surplus makes an agent more impatient and increases for him the costs of delay. As a result, higher α gives the buyer additional incentives to accept faster in the SBS which in turn increases the liquidity of high-quality assets. For low-quality assets (below θ^*), the logic is the opposite. The seller bears
a smaller fraction of the delay costs, which increases his incentives to wait longer, and hence, decreases the liquidity of such asset qualities.

References

48

