Why Are Exchange Rates So Smooth? A Heterogeneous Portfolio Explanation

YiLi Chien, Hanno Lustig, and Kanda Naknoi*
FRB of Saint Louis, Stanford GSB and NBER, and UConn
June 2016

Abstract

Empirical work on asset prices suggests that pricing kernels have to be almost perfectly correlated across countries. If they are not, real exchange rates are too smooth to be consistent with high Sharpe ratios in asset markets. However, the cross-country correlation of macro fundamentals is far from perfect. We reconcile these empirical facts in a two-country stochastic growth model with heterogeneous household portfolios. A large fraction of households either hold low risk portfolios and/or do not adjust their portfolio optimally, and these households drive down the cross-country correlation in aggregate consumption. Only a small fraction of households participate in international risk sharing by frequently trading domestic and foreign equities. These active traders are the marginal investors, who impute the almost perfect correlation in pricing kernels. In our calibrated economy, we show that this mechanism can quantitatively account for the excess smoothness of exchange rates in the presence of highly volatile stochastic discount factors.

JEL codes: G15, G12, F31, F10.
Keywords: asset pricing, market segmentation, exchange rate, international risk sharing.

*Chien: Research Division, Federal Reserve Bank of St. Louis, St. Louis, MO 63166-0442; E-mail: yilichien@gmail.com. Lustig: Stanford Graduate School of Business, Stanford, CA 94305; E-mail: hlustig@stanford.edu. Naknoi: Department of Economics, University of Connecticut, Storrs, CT 06269-1063; Email: kanda.naknoi@uconn.edu. We thank participants of Midwest Macro meeting in West Lafayette, ES summer meeting in Philadelphia, WFA meeting in Park City and seminars at St. Louis Fed, Rochester University, University of Connecticut, Academia Sinica, National Taiwan University, National Chung Cheng University, Central Bank of the Republic of China (Taiwan) and Sungkyunkwan University, for comments and questions. The views expressed are those of the individual authors and do not necessarily reflect the official positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.
1 Introduction

A striking disconnect exists in international finance between the evidence gathered from asset prices and that gathered from quantities. When markets are complete, no arbitrage implies that the percentage rate of depreciation of the real exchange rate (RER) is given by the difference between the domestic and the foreign stochastic discount factors. We know from the data on RERs and asset prices that the volatility of RERs is much smaller than the volatility of the stochastic discount factors. Hence, the evidence from asset markets implies that the stochastic discount factors are highly correlated across countries. In fact, Brandt, Cochrane, and Santa-Clara (2006) conclude that the correlation of the stochastic discount factors is close to one. However, the quantity data paint a different picture. In standard representative agent models, the correlation of pricing kernels is identical to the correlation of aggregate consumption growth. Empirically, the correlation of aggregate consumption growth is below 50% for most industrialized country pairs. In this paper, we address this disconnect between prices and quantities in international finance.

Household finance may hold the key to this disconnect. Standard macro-finance models assume that aggregate risk has been distributed efficiently across households, but in our model most households either do not bear their share of aggregate risk or do not adjust their risk loading in response to the change of investment opportunity. In equilibrium, a large amount of aggregate risk is borne by a relatively small number of sophisticated investors, who participate in both domestic and foreign equity markets and optimally adjust their portfolios over time. Thus, country-specific risk is concentrated among a small pool of sophisticated domestic and foreign investors. These investors achieve a higher degree of risk sharing among themselves than the average investors in these countries. Hence, the marginal investor’s consumption growth is highly correlated across countries, but the average investor’s is not. This mechanism can quantitatively account for the excess smoothness of the RER in the presence of stochastic discount factors that satisfy the Hansen-Jagannathan bounds. The critical feature that differs our model mechanism to those in the segmented market

Footnote 1: There is an ongoing debate on whether incomplete market models help to solve the puzzle caused by the disconnect between prices and quantities. When markets are incomplete, the percentage rate of depreciation of the RER may not be identical to the difference between the domestic and the foreign stochastic discount factors. Hence, the incomplete market model may help to resolve the puzzle as suggested by Favilukis, Garlappi, and Neamati (2015). In addition, Maurer and Tran (2016) argue that a model embedded with risk entanglement, a refinement concept of incomplete market, can successfully explain these puzzles in the international finance. However, Lustig and Verdelhan (2015) show that market incompleteness cannot quantitatively resolve the puzzle without largely eliminating currency risk premia. Based on the empirical evidence of household finance, our view is that most households do not utilize the financial assets available to them and they act like being in an incomplete market world even if the market is indeed complete.
literature comes from the finer distinguishing between equity market participants and marginal investors. The standard segmented market model often do not distinguish them. In contrast, not every equity market participant is the marginal investor in our model. Only a small set of equity market participants who does optimally and frequently adjust their portfolios could be the marginal investors while the rest are not. In this sense, our model is more delicate than those in the segmented market literature. As we shall show later, distinguishing equity market participants and marginal investors in our calibrated model makes a crucial difference in terms of the performance of quantitative exercises.

Our model approach is firmly grounded in the empirical evidence on household finance. These studies have found that most households do not purchase all assets available on the menu. In fact, the composition of household asset holdings varies greatly across households even in a developed country like the United States. Only 50% of U.S. households participate in the equity market, according to the 2010 Survey of Consumer Finance. The nonparticipation rate is even higher in other developed countries. Obviously, the nonparticipants bear no aggregate risk from equity markets and create the residual aggregate risks. Even among the equity market participants, many of them are under-participated meaning that their portfolio share of equity is much lower than that of safe assets. In addition, most of the equity market participants trade very infrequently and do not rebalance their portfolios often in response to change of investment opportunity. The inertia response of their investment behavior makes them unqualified to be marginal investors even if they do participate in the equity market. In sum, the heterogeneity in observed portfolio choices data implies a highly uneven distribution of risk across investors and across times.

The empirical household finance literature also finds that the level of financial sophistication correlates highly with incomes among households. Hence, our model mechanism predicts that the high-income households’ consumption growth is more internationally correlated than low-income households’ consumption growth. In section 2 we provide evidence that consumption growth of high-income regions in the U.S. and Canada are indeed more correlated than that of low-income regions. We employ annual data of U.S. state-specific and Canada’s province-specific income per capita as well as consumption per capita from 1997 to 2014. We do not employ Canada’s household-specific data, because they span over a shorter period. Then, we regress the state-province-specific consumption growth correlation on the mean deviation of state-province-specific combined income.

---

2See Guiso and Sodini (2012) for an excellent survey of this literature.
3For example, see the empirical studies done by Ameriks and Zeldes (2004), Calvet, Campbell, and Sodini (2009) and Brunnermeier and Nagel (2008)
controlling for their bilateral distance and whether they share border. The two measures of trade costs are included, because trade in goods is necessary for international risk sharing. We find that the estimated coefficient of the mean deviation of the state-province-specific combined income is positive and statistically significant at 1%. Moreover, the quantitative impact is large; 1% increase in the mean deviation of the state-province-specific combined income increases the consumption growth correlation by 5%.

In the quantitative exercise, we parameterize our model to match the world economy, in which the United States is the home country and the foreign country is the sum of France, Germany, Japan, and the United Kingdom. In our benchmark economy, we find that the international correlation of the pricing kernels exceeds 97%, while the international correlation of consumption growth is only 17%. Despite the high volatility of the pricing kernels (more than 42%), the high correlation of pricing kernels successfully yields a only 9.4% standard deviation of RER, which is close to the data.

The large trade frictions while still allowing some degree of international goods trade also plays an essential role in solving this puzzle. This can be seen intuitively by the following two extreme cases. First, without any trade friction, the price of tradable goods have to be equalized across countries suggesting a constant RER unless countries have different consumption baskets. Hence, allowing frictionless trade leads to a zero volatility of exchange rate. On the other hand, consider another extreme in which there is no trade. Without goods trade, domestic households would not receive payments from abroad and hence would choose not to hold foreign assets. As a result, there is no international risk sharing and hence financial frictions play no role to solve this puzzle. Definitely, the reality lies in between these extreme cases and so does our calibrated model. The importance of goods trade for international risk sharing is also well documented empirically by Fitzgerald (2012). She finds that frictions in the goods markets limit risk sharing for both developed and developing countries. However, for analytical simplicity, we do not model trade friction specifically. Instead, we use a home bias in consumption by the preferences specification and the introduction of the nontraded good as an approximation of tarde frictions. In our quantitative exercise, we illustrate that a home bias in consumption is necessary for solving the puzzling fact of RER.

Some work related to this puzzle that modifies the preferences or the properties of endowment growth in a standard representative agent model. Colacito and Croce (2011) endow the representative investor with recursive preferences that impute a concern about long-run risk in consumption.
When long-run risk is highly correlated across countries, the pricing kernels become highly correlated even though aggregate consumption growth is not. Gavazzoni and Santacreu (2015) find that a calibrated model with the long run risk that originating from international technology diffusion can quantitatively RER volatility puzzle. Farhi and Gabaix (2008) rely on correlated disaster risk instead. In related work, Stathopoulos (2012) analyzes a model in which the representative investor has preferences with external habit persistence. External habit formation creates an accumulative effect on pricing kernels from the past history of consumption growth that also generates highly correlated pricing kernels, despite the low correlation in current consumption growth. There are two other very recent research related to our paper. Both of them consider the standard segmented market mechanism in the incomplete market environment. Zhang (2015) offers an explanation to a puzzling fact that high correlation of stock market returns while with low correlation of fundamental across countries. However, her work does not address the exchange rate issues. Another paper by Kim and Schiller (2015) focus on RER volatility with the segmented market story and trade frictions. Like most of the standard segmented market models, they do not distinguish between marginal traders and equity market participants so that the residual aggregate risks in their calibrated model are not concentrated enough in order to deliver a nice asset pricing result and exchange rate volatility.

Our main contribution to the literature is the integration of the micro evidence on household portfolio choices as well as trade frictions into a general equilibrium model to solve the exchange rate volatility puzzle. In contrast to the standard segmented market model, our model further distinguish the difference between marginal investors and equity investors as suggested by the empirical evidence. We find this distinguishment enhances the performance of the model and is essential to solve the puzzle quantitatively. The quantitative results also indicates a large enough of trade frictions that still allowing some degree of international goods trade play a key role. Therefore, the international trade does matter to the exchange rate determination. We think our model offers an initial step to close the gap on the view of exchange rate determination between international finance and international trade literature. Moreover, Our model does not require nonstandard preferences or aggregate risk specifications. Instead, the mechanism in our model relies on the skewness of the cross-sectional distribution of aggregate risks, which are strongly supported by the empirical evidence.

Finally, our study contributes to the emerging literature that integrates international portfolio choice into international macroeconomics. Specifically, we demonstrate the importance of house-
hold portfolio heterogeneity in open economies, whereas the majority of open-economy macroeconomic models rely on a representative agent framework. Recent studies by Coeurdacier and Rey (2013) and Pavlova and Rigobon (2010) are prominent examples of this line of work. Most international macroeconomic models assume either incomplete markets with only one asset or a complete market environment without portfolio heterogeneity. Although a complete menu of assets is traded in our model, we allow for heterogeneity in household trading technologies because it is strongly supported by the data.

The rest of our study is organized as follows. The empirical evidence for higher consumption correlation among higher income households across countries is in the next section. Section 3 describes our model. The quantitative results and counterfactual exercises are detailed in Section 4. Section 5 concludes our study.

2 Empirical Evidence

This section provides evidence that consumption growth of high-income regions in the U.S. and Canada are more correlated than that of low-income regions, after controlling for trade costs. To be precise, we estimate the following equation:

\[
\rho(\Delta c_{it}, \Delta c_{jt}) = b_0 + b_1 \left( (y_i + y_j) - \overline{(y_i + y_j)} \right) + b_2 T_{ij} + v_{ijt}
\]  

where \(\rho(\Delta c_{it}, \Delta c_{jt})\) denotes the correlation of the first-difference of logarithm of per capita consumption of U.S. state \(i(i = 1, \ldots, N_i)\) and that of Canada’s province/territory \(j(j = 1, \ldots, N_j)\) over all years \(t\), \(y_i\) denotes the average over time of logarithm of per capita income of U.S. state \(j\), \(y_j\) denotes that of Canada’s province/territory \(j\), \(\overline{(y_i + y_j)}\) is the cross-section average of the sum \(y_i + y_j\) over all \(ij\) pairs, and \(T_{ij}\) is a vector of their bilateral trade costs.

We include trade costs in the estimating equation for two reasons. First, in theory international risk sharing requires international trade in both goods and assets, thus the presence of trade costs might explain low degree of risk sharing as documented by Fitzgerald (2012). Second, the empirical literature has found that trade costs influence bilateral trade flows in goods markets.\(^4\) We hypothesize that our main coefficient of interest is \(b_1\), which is that of the mean deviation of

\(^4\)See Anderson and van Wincoop (2004) for the literature review on trade costs.
combined income of two regions in the U.S. and Canada. We hypothesize that $b_1 > 0$. For $b_2$, we expect $b_2 < 0$, according to the trade literature.

Our dataset covers 50 U.S. states and 13 Canada’s provinces and territories, hence the number of $ij$ pairs is 650. The frequency of consumption and income data is annual, and the sample period is 1997-2014. The U.S. consumption data are from the Bureau of Economic Analysis, and Canada’s consumption data are from the Statistics Canada. The consumption series for U.S. states is the real personal consumption expenditure, whereas that for Canada’s provinces and territories is the per capita real final household expenditure. The income series for both U.S. states and Canada’s provinces and territories is the real disposable household income per head, and the income data are from the OECD.

We consider two proxies of bilateral trade costs: the log of bilateral distance and the border dummy. The distance is the great circle distance from the most populated city in U.S. state $i$ to that in Canada’s province/territory $j$, and it is obtained from http://www.gpsvisualizer.com/calculators. The border dummy is 1 when U.S. state $i$ shares border with Canada’s province/territory $j$, and zero otherwise.

Descriptive statistics of our dataset are tabulated in Table I. The consumption growth correlation of U.S. state and Canada’s province/territories is 0.37 on average, and varies from -0.24 to 0.79. As a comparison, the correlation growth correlation from the aggregate statistics is 0.65. A reason why the correlation of consumption growth from aggregate data is higher than the average from the regional data is that the average is a simple mean.

The mean deviation of state-province-specific combined income ranges from -2% to 3%, whereas the average is 0% by construction. Its range reflects an asymmetry among the top half and the bottom half of the income distribution. Indeed, about 55% of the state-province pairs have combined income below the mean.

As for the trade costs statistics, distance displays a much wider variation than the border dummy. In fact, only 15 state-province pairs out of 650 pairs share border.

[Table 1 about here.]

Table II reports the estimation results from ordinary least squares. Regardless of whether we include trade costs measure, an increase in mean deviation of combined income significantly increases the consumption growth correlation. Quantitatively, a 1% increase in mean deviation

---

5The real consumption per capita series at the aggregate level for Canada and the U.S. is from the World Bank. The series are of constant prices.
of combined income increases the consumption growth correlation by 5 percentage points. As anticipated, trade costs have negative impacts on the consumption growth correlation, and the negative impact is statistically significant. To be precise, a 1% reduction of distance increases the consumption growth correlation by 4 basis points. However, whether the U.S. state shares border with the Canada’s province or not does not have a significant impact on the consumption growth correlation.

[Table 2 about here.]

In sum, our empirical evidence motivates our theory that the consumption growth correlation among high-income households is higher than that among low-income households. In the next section, we propose that high-income households’ ability to share aggregate risk in asset markets offers an explanation for the empirical pattern.

3 The Model

3.1 Environment

We consider an endowment economy with two countries, home and foreign. There are a large number of agents in each country with a unity measure. Each country is endowed with a nontraded good and an export good. For simplicity, we assume that home households consume the nontraded good and the foreign export good. Likewise, foreign households consume the nontraded good and the home export good.

Time is discrete, infinite, and indexed by \( t \in [0, 1, 2, \ldots] \). To have a stationary economy, we assume an identical average endowment growth rate for each country, while the actual growth rate may deviate from the average one. More specifically, let \( \ln m_t \) and \( \ln m_t^* \) be the percentage deviation of endowment from the growth trend. Then, the country-specific endowment, denoted by \( Y \), in period \( t \) is

\[
\begin{align*}
\ln Y_t &= t \ln \overline{g} + \ln m_t, \\
\ln Y_t^* &= t \ln \overline{g} + \ln m_t^*,
\end{align*}
\]
where $\bar{g}$ is the average growth rate of endowment of both countries. The output growth process is therefore governed by the evolution of $m$, which follows the following AR(1) process:

\[
\ln m_{t+1} = \rho \ln m_t + \varepsilon_{t+1}, \varepsilon_{t+1} \sim N(0, \sigma_\varepsilon^2)
\]
\[
\ln m^*_t = \rho \ln m^*_t + \varepsilon^*_{t+1}, \varepsilon^*_{t+1} \sim N(0, \sigma_{\varepsilon^*}^2).
\]

Let $z^t$ denote the history of aggregate states up to period $t$. In each country, a constant fraction $\lambda$ of the endowment is the nontraded good, and the rest is the export good:

\[
Y_n(z^t) = \lambda Y(z^t) \text{ and } Y_x(z^t) = (1-\lambda)Y(z^t)
\]
\[
Y^*_n(z^t) = \lambda Y^*(z^t) \text{ and } Y^*_x(z^t) = (1-\lambda)Y^*(z^t),
\]

where $Y_n, Y_x, Y^*_n,$ and $Y^*_x$ denote endowments of home nontraded, home export, foreign nontraded, and foreign export goods, respectively.

### 3.2 Aggregate Income

Aggregate income is the total value of export and non-tradable goods. Let the variables $q_n(z^t)$ and $q^*_n(z^t)$ denote the price of the home nontraded good in terms of the home consumption basket, and the price of the home export good in terms of the foreign consumption basket, respectively. Then the total income at home, denoted by $I(z^t)$, evaluated at home consumption basket is given by

\[
I(z^t) = q_n(z^t)Y_n(z^t) + \frac{q^*_n(z^t)}{e_t(z^t)}Y^*_n(z^t),
\]

where $e_t$ denotes the RER or the price of the home consumption basket relative to the foreign consumption basket. Similarly, the total income at foreign country, denoted by $I^*(z^t)$, in terms of foreign consumption basket is

\[
I^*(z^t) = q^*_n(z^t)Y^*_n(z^t) + q_x(z^t)e_t(z^t)Y^*_x(z^t),
\]
where $q_n^*(z^t)$ and $q_x(z^t)$ denote the price of the foreign nontraded good in terms of the foreign consumption basket, and the price of the foreign export good in terms of the home consumption basket, respectively. In addition, the total income in each country is divided into two parts: diversifiable income and nondiversifiable income. Claims to the diversifiable income can be traded in financial markets while claims to nondiversifiable income cannot.

We assume a constant share of nondiversifiable income, $\alpha$, across countries and time. The nondiversifiable component is subject to idiosyncratic stochastic shocks. These shocks are i.i.d. across households in a country. We use $\eta_t$ and $\eta_t^*$ to denote the idiosyncratic shock in period $t$ for the home and the foreign countries respectively. Then, $\eta^t$ and $\eta^{*,t}$ denote the history of idiosyncratic shocks of home and foreign households, respectively.

We use $\pi(z^t, \eta^t)$ to denote the unconditional probability of that state $(z^t, \eta^t)$ will be realized. The events are first-order Markov and their probabilities are assumed to be independent between $z$ shocks and $\eta$ or $\eta^*$ shocks:

$$
\pi(z^{t+1}, \eta^{t+1}|z^t, \eta^t) = \pi(z_{t+1}|z^t)\pi(\eta_{t+1}|\eta^t)
$$

$$
\pi(z^{t+1}, \eta^{*,t+1}|z^t, \eta^{*,t}) = \pi(z_{t+1}|z^t)\pi(\eta^*_{t+1}|\eta^{*,t}).
$$

## 3.3 Preferences

The household derives utility from consuming composites of goods,

$$
\sum_{t=1}^{\infty} \beta^t \sum_{(z^t, \eta^t)} c(z^t, \eta^t)^{1-\gamma} \frac{1}{1-\gamma} \pi(z^t, \eta^t),
$$

where $\gamma > 0$, $0 < \beta < 1$. The parameter $\gamma$ denotes the coefficient of relative risk aversion, $\beta$ is the time discount factor, and $c(z^t, \eta^t)$ is the consumption basket. The home consumption basket is a Cobb-Douglas composite of the nontraded good $c_n$ and the foreign export good $c_x^*$,

$$
c(z^t, \eta^t) = c_n(z^t, \eta^t)^{\theta} c_x^*(z^t, \eta^t)^{1-\theta}.
$$

---

6The non-diversifiable and diversifiable incomes here work exactly like labor income and capital income in the standard production economy, respectively
The parameter $\theta \in [0, 1]$ represents a home bias in consumption and governs the relative preferences over the nontraded and foreign export goods.

Similarly, the preferences for the foreign households are given by

$$U(\{c^*\}) = \sum_{t=1}^{\infty} \beta^t \sum_{(z^t, \eta^t)} c^*(z^t, \eta^*)^{1-\gamma} \pi(z^t, \eta^t),$$

(3)

where $\gamma > 0$, $0 < \beta < 1$. The foreign basket is similarly defined as

$$c^*(z^t, \eta^*) = c^*_n(z^t, \eta^*)^\theta c^*_x(z^t, \eta^*)^{1-\theta}.$$  

### 3.4 Correlation of Consumption Growth

Given the preferences, the aggregate consumption basket becomes a composite of the home nontraded good and the foreign export good endowment:

$$C(z^t) = Y_n(z^t)^\theta Y^*_x(z^t)^{1-\theta}.$$  

(4)

Likewise, foreign aggregate consumption is a composite of the foreign nontraded good and the home export good:

$$C^*(z^t) = Y^*_n(z^t)^\theta Y_x(z^t)^{1-\theta}.$$  

(5)

As a result, the consumption growth correlation is exogenously determined by the preferences parameter, $\theta$, as well as the correlation of the endowment shock process. To see why, notice that the resource constraints in (4) and (5) together with the endowment imply that

$$\Delta \ln C(z^t) = \theta \Delta \ln Y(z^t) + (1 - \theta) \Delta \ln Y^*(z^t)$$

$$\Delta \ln C^*(z^t) = \theta \Delta \ln Y^*(z^t) + (1 - \theta) \Delta \ln Y(z^t),$$

With a symmetric assumption, $\sigma(\Delta \ln Y) = \sigma(\Delta \ln Y^*)$, where $\sigma(X)$ denotes the standard deviation of variable $X$. Let $\rho(X, X')$ denote the correlation between variables $X$ and $X'$. Then, we can
derive the consumption growth correlation as

$$
\rho(\Delta \ln C, \Delta \ln C^*) = \frac{2\theta(1 - \theta) + (\theta^2 + (1 - \theta)^2)\rho(\Delta \ln Y, \Delta \ln Y^*)}{(\theta^2 + (1 - \theta)^2) + 2\theta(1 - \theta)\rho(\Delta \ln Y, \Delta \ln Y^*)}.
$$

(6)

The parameter \( \theta \) governs the correlation of consumption growth in our model. If \( \theta = 1 \), then \( \rho(\Delta \ln C, \Delta \ln C^*) = \rho(\Delta \ln Y, \Delta \ln Y^*) \). In this case, the preferences exhibit a complete home bias in consumption, and hence there is no goods trade between the two countries. We would like to think of this case as an approximation of having an extremely high trade friction so that all goods trade are shut down and hence no international risk sharing. If \( \theta = 0.5 \), then \( \rho(\Delta \ln C, \Delta \ln C^*) = 1 \). The perfect correlation in consumption growth arises when there is no home bias in consumption. We interpret this case as an approximation of zero trade friction and countries reach full risk-sharing.

### 3.5 Leverage and Asset Supply

In each country, three types of assets are available: state-contingent claims on aggregate shocks, risky equities and risk-free bonds. Note that we assume that the idiosyncratic risk is uninsurable and hence there is no state contingent claims on idiosyncratic shocks. Both risky equities and risk-free bonds are claims to the diversifiable income. Equities represent a leveraged claim to diversifiable income. The leverage ratio is constant over time and denoted by \( \phi \). Let \( B_t(z^t) \) denote the supply of a one-period risk-free bond in period \( t \) in the home country and \( W_t(z^t) \) denote the price of a claim to home country’s total diversifiable income in period \( t \). With a constant leverage ratio, the total supply of \( B_t(z^t) \) must be adjusted such that

$$
B_t(z^t) = \phi [W_t(z^t) - B_t(z^t)].
$$

By the previous equation, the aggregate diversifiable income can be decomposed into the interest payment to bondholders and payouts to shareholders. The total payouts, including cash dividends and net repurchases, denoted \( D_t(z^t) \), are

$$
D_t(z^t) = (1 - \alpha)I(z^t) - R_{t,t-1}^f(z^{t-1})B_{t-1}(z^{t-1}) + B_t(z^t),
$$
where $R_{t,t-1}^{f}(z^{t-1})$ denotes the home risk-free rate at period $t-1$. For simplicity, our model assumes that the supply of equity shares is constant. As a result, if a firm reissues or repurchases equity shares, it must be reflected by $\overline{D}_t(z^t)$ in our model. Similarly, the supply of foreign bonds is given by

$$\overline{B}_t(z^t) = \phi^* \left[ W_t^*(z^t) - \overline{B}_t(z^t) \right],$$

while the payouts on foreign equity are given by

$$\overline{D}_t^*(z^t) = (1 - \alpha^*) I_t^*(z^t) - R_{t,t-1}^{f}(z^{t-1}) \overline{B}_t(z^{t-1}) + \overline{B}_t(z^t),$$

where $R_{t,t-1}^{f}(z^{t-1})$ denotes the foreign risk-free rate at period $t-1$.

Finally, we denote the value of total home equity or a claim to total payouts on $\overline{D}_t(z^t)$ by $V_t(z^t)$. Likewise, we denote the value of total foreign equity or a claim to total payouts on $\overline{D}_t^*(z^t)$ by $V_t^*(z^t)$. The gross returns of home and foreign equities, or $R_{t,t-1}^d(z^t)$ and $R_{t,t-1}^{d*}(z^t)$, respectively, are therefore given by

$$R_{t,t-1}^d(z^t) = \frac{\overline{D}_t(z^t) + V_t(z^t)}{V_{t-1}(z^{t-1})},$$

$$R_{t,t-1}^{d*}(z^t) = \frac{\overline{D}_t^*(z^t) + V_t^*(z^t)}{V_{t-1}^*(z^{t-1})}.$$

### 3.6 Heterogeneity in Trading Technologies

There is significant portfolio heterogeneity not only across countries but also across investors within a country. To capture such heterogeneity, we implement the approach adopted by Chien, Cole, and Lustig (2011) and exogenously impose different restrictions on investors’ portfolio choices. These restrictions apply to the menu of assets that these investors can trade as well as the composition of households’ portfolios.

There are two classes of investors in terms of their asset trading technologies. The first class of investors faces no restrictions on portfolio choices and the menu of tradable assets. Specifically, these investors trade a complete set of contingent claims on the domestic and the foreign endowment. We call these investors Mertonian traders. They optimally adjust their portfolio choices in response to changes in the investment opportunity set. Hence, they are marginal traders and price
exchange rate risk in our model.

The second class of investors faces restrictions on their portfolios and are called non-Mertonian traders. Specifically, their portfolio composition is restricted to be constant over time. We assume two types of non-Mertonian traders as follows: The first type are non-Mertonian equity investors, who can trade domestic equities and the domestic risk-free bonds. The other type are non-participants, who invest in only the domestic risk-free bonds. Even though the portfolio composition of non-Mertonian traders is exogenously given, they can still optimally choose how much to save and consume.

Non-Mertonian equity investors deviate from the optimal portfolio choices in two dimensions. First, they cannot change the share of equities in their portfolios in response to changes in the market price of risk, which indicates missed market timing. Second, their portfolio share in equities might deviate from the optimal one on average.

We denote the fraction of different types of investors in the home country and the foreign country by \( \mu_j \) and \( \mu_j^* \), where \( j \in \{ me, et, np \} \) represents Mertonian investors, non-Mertonian equity investors, and nonparticipants, respectively.

### 3.6.1 Trading of Mertonian Investors

We start by considering a version of our economy in which all trade occurs sequentially. Securities markets are segmented. Only the Mertonian traders have access to all securities markets. A home Mertonian trader who enters the period with net financial wealth \( a_t(z^t, \eta_t^{t-1}) \) in node \( (z^t, \eta^t) \) has accumulated domestic claims worth \( a_{ht}(z^t, \eta_t^{t-1}) \) and claims on foreign investments worth \( a_{ft}(z^t, \eta_t^{t-1}) \):

\[
a_t(z^t, \eta_t^{t-1}) = a_{ht}(z^t, \eta_t^{t-1}) + \frac{a_{ft}(z^t, \eta_t^{t-1})}{e_t(z^t)},
\]

where \( a_{ht} \) denotes the payoff of state-contingent claims in the home country expressed in terms of the home consumption basket, and \( a_{ft} \) denotes the payoff on foreign state contingent claims expressed in terms of the foreign consumption basket.

\( Q(z^{t+1}|z^t) \) and \( Q^*(z^{t+1}|z^t) \) are the state-contingent prices in the home country and the foreign country, expressed in units of the home and foreign consumption basket respectively. At the end of the period, home Mertonian traders go to securities markets to buy domestic and foreign financial assets.

\(^7\)The net financial wealth in node \((z^t, \eta^t)\) does not depend on the realization of idiosyncratic shock, \( \eta_t \), because uninsurable idiosyncratic risks
state-contingent claims $a_{h,t+1}(z^{t+1}, \eta^t)$ and $a_{f,t+1}(z^{t+1}, \eta^t)$, and they go to the goods market to purchase $c(z^t, \eta^t)$ units of the home consumption basket, subject to the following one-period budget constraint:

$$
\sum_{z_{t+1}} Q(z^{t+1}|z^t)a_{h,t+1}(z^{t+1}, \eta^t) + \sum_{z_{t+1}} Q^*(z^{t+1}|z^t)e_t(z^t)a_{f,t+1}(z^{t+1}, \eta^t) + c(z^t, \eta^t)
\leq a_t(z^t, \eta^t) + \alpha I(z^t)\eta_t, \text{ for all } (z^t, \eta^t).
$$

Note that the numeraire is the home consumption basket. Investors can spend all of their nondiversifiable income and with which the accumulated wealth they entered the period.

Similarly, the net financial wealth $a^*_t(z^t, \eta^{*,t-1})$ of a foreign Mertonian trader at the start of the period consists of the net financial claims on the home endowment $a^*_{ht}(z^t, \eta^{*,t-1})$ and the claims on the foreign endowment $a^*_{ft}(z^t, \eta^{*,t-1})$:

$$
a^*_t(z^t, \eta^{t-1}) = a^*_{ht}(z^t, \eta^{t-1})e_t(z^t) + a^*_{ft}(z^t, \eta^{t-1}).
$$

For the foreign households, their budget constraint is specified in terms of the foreign consumption basket. At the end of the period, the foreign Mertonian trader buys state-contingent claims $a^*_{h,t+1}(z^{t+1}, \eta^*t)$ and $a^*_{f,t+1}(z^{t+1}, \eta^*t)$ in financial markets and consumes $c^*(z^t, \eta^t)$ units of the foreign consumption basket. The flow budget constraint is given by

$$
\sum_{z_{t+1}} Q(z^{t+1}|z^t)a^*_{h,t+1}(z^{t+1}, \eta^*t) + \sum_{z_{t+1}} Q^*(z^{t+1}|z^t)a^*_{f,t+1}(z^{t+1}, \eta^*t) + c^*(z^t, \eta^*t)
\leq a^*_t(z^t, \eta^{*,t-1}) + \alpha I^*(z^t)\eta^*_t, \text{ for all } (z^t, \eta^*t).
$$

Note that all investors are subject to non-negative net wealth constraints, given by $a_t(z^t, \eta^{t-1}) \geq 0$ and $a^*_t(z^t, \eta^{*,t-1}) \geq 0$.

**Markets Arbitrageurs** These Mertonian investors are arbitrageurs in our model. They enforce the no-arbitrage condition in the state-contingent claim market, which governs the evolution of exchange rates:

$$
Q(z^{t+1}|z^t) = Q^*(z^{t+1}|z^t)\frac{e_t(z^t)}{e_{t+1}(z^{t+1})}.
$$
Taking the logarithm of the no-arbitrage condition yields the following:

\[ \ln \frac{e_{t+1}}{e_t} = \ln Q_{t+1} - \ln Q_{t+1}^*. \]  

(7)

Hence, the percentage rate of depreciation of the RER is determined by the percentage difference between the home and foreign pricing kernels.

### 3.6.2 Trading of Non-Mertonian Investors

The non-Mertonian investors are restricted to fixed portfolio weights. Their total asset holding at the beginning of period \( t \), is given by their asset position at the end of the previous period, denoted by \( \hat{a}_{t-1}(z^{t-1}, \eta^{t-1}) \), multiplied by the gross portfolio return, \( R_{t,t-1}^p(z^t) \), which depends on their fixed portfolio. These non-Mertonian investors face the following budget constraint for all \((z^t, \eta^t)\):

\[ \hat{a}_t(z^t, \eta^t) + c(z^t, \eta^t) \leq R_{t,t-1}^p(z^t)\hat{a}_{t-1}(z^{t-1}, \eta^{t-1}) + \alpha I(z^t)\eta_t, \]

where all variables are expressed in units of the home consumption basket. The gross return on the fixed portfolio is given by

\[ R_{t,t-1}^p(z^t) = \omega R_{t,t-1}^d(z^t) + (1 - \omega)R_{t,t-1}^f(z^t), \]

where \( \omega \) denotes the fixed portfolio shares in domestic equities. In the case of nonparticipants, \( \omega \) is zero.

The budget constraint of the non-Mertonian investors in the foreign country is given by

\[ \hat{a}^*_t(z^t, \eta^*_t) + c^*(z^t, \eta^{*,t}) \leq R_{t,t-1}^{p*}(z^t)\hat{a}^*_{t-1}(z^{t-1}, \eta^{*,t-1}) + \alpha I^*(z^t)\eta^*_t, \]

for all \((z^t, \eta^*_t)\). The gross return on the fixed portfolio is given by

\[ R_{t,t-1}^{p*}(z^t) = \omega^* R_{t,t-1}^{d*}(z^t) + (1 - \omega^*)R_{t,t-1}^{f*}(z^t), \]

16
where $\omega^*$ denotes the fixed portfolio share in foreign equities. Finally, all investors are subject to nonnegative net wealth constraints, given by $\tilde{a}_t(z^t, \eta^t) \geq 0$ and $\tilde{a}^*_t(z^t, \eta^t) \geq 0$.

The details of the household problem and its associated Euler equations are described in Appendix A.1 and A.2.

### 3.7 Competitive Equilibrium

A competitive equilibrium for this economy is defined in the standard way. It consists of allocations of consumption, allocations of state-contingent claim, bond, and equity choices, and a list of prices such that (i) given these prices, a household’s asset and consumption choices maximize her expected utility subject to the budget constraints, the nonnegative net wealth constraints, and the constraints on portfolio choices; and (ii) all asset markets clear.

#### 3.7.1 Pricing Kernel

We use a recursive multiplier method to solve for equilibrium allocations and prices. This approach has the advantage that we can express the household consumption share, which is her consumption $c$ relative to aggregate consumption $C$, in terms of a ratio of his recursive multiplier, $\zeta$, to a single cross-sectional moment of the multiplier distribution, which we call $h$. To be precise,

$$\frac{c(z^t, \eta^t)}{C(z^t)} = \frac{\zeta(z^t, \eta^t)^{-\frac{1}{\gamma}}}{h_t(z^t)}, \tag{8}$$

where $\zeta(z^t, \eta^t)$ is the recursive Lagrangian multiplier of the domestic household and $h_t(z^t)$ is defined as a $-1/\gamma$ moment of $\zeta(z^t, \eta^t)$ across traders. Please refer to Appendix A.3 for details. Similarly, the same consumption sharing rule is applied for foreign investors:

$$\frac{c^*(z^t, \eta^*)}{C^*(z^t)} = \frac{\zeta^*(z^t, \eta^*; t)^{-\frac{1}{\gamma}}}{h^*_t(z^t)}$$

As a result, the home stochastic discount factor is given by the standard Breeden-Lucas expression.

---

with a multiplicative adjustment:

\[
Q_{t+1}(z^{t+1}|z^t) = \beta \left( \frac{C(z^{t+1})}{C(z^t)} \right)^{-\gamma} \left( \frac{h_{t+1}(z^{t+1})}{h_t(z^t)} \right)^\gamma \pi(z_{t+1}|z^t). \tag{9}
\]

This can be interpreted as the intertemporal marginal rate of substitution (IMRS) of an unconstrained domestic Mertonian investor. The foreign stochastic discount factor of the foreign country is given by

\[
Q_{t+1}^*(z^{t+1}|z^t) = \beta \left( \frac{C^*(z^{t+1})}{C^*(z^t)} \right)^{-\gamma} \left( \frac{h_{t+1}^*(z^{t+1})}{h_t^*(z^t)} \right)^\gamma \pi(z_{t+1}|z^t); \tag{10}
\]

this can be interpreted as the IMRS of an unconstrained foreign Mertonian investor. As a result, the percentage rate of depreciation of the RER is given by

\[
\Delta \ln e_{t+1} = -\gamma (\Delta \ln C_{t+1} - \Delta \ln C_{t+1}^*) + \gamma (\Delta \ln h_{t+1} - \Delta \ln h_{t+1}^*). 
\]

### 3.7.2 Segmentation Mechanism

The key mechanism of our model works through the concentration of global aggregate risk among a small pool of investors. As we show later, our calibrated model features a large pool of non-Mertonian investors whose exposure to aggregate risk is relatively low, given their low-risk and home-biased portfolios. In contrast, a relatively small set of investors equipped with better trading technologies – the so-called Mertonian investors – can accumulate a higher level of wealth and smooth consumption better. More importantly, their sophisticated trading technologies allow them to share the country-specific risk with foreign investors.

The heterogeneity of portfolio choices has a great impact on pricing. First, the concentration of aggregate risk among a small group of Mertonian investors generates a high market price of risk. Moreover, the equity home bias among non-Mertonian investors offers a good risk-sharing opportunity among Mertonian investors across countries. Given the fact that Mertonian investors are marginal traders who price risks, the pricing kernels could be highly correlated as a result of sharing country-specific risk among them, despite the limited sharing capacity at the aggregate level. In particular, the risk sharing at the aggregate level is restricted by a high degree of home bias in consumption.
3.8 A Special Case: The Two-Period Model

To demonstrate the mechanism in our model, this subsection describes a special case with two periods and the following simplified assumptions. First, the home and foreign countries are fully symmetric. Second, the endowment in period 1 is nondiversifiable, freely traded, not subject to uncertainty, and normalized to one unit of the consumption good; therefore, the exchange rate is unity in period 1. Third, the realization of each country’s endowment in period 2 is either $1 + g$ in the high-endowment state or $1 - g$ in the low-endowment state, where $g > 0$. Hence, there are four possible combinations of home and foreign endowments in period 2: $(Y_2(z_2), Y_2^*(z_2)) \in \{(1 + g, 1 + g), (1 + g, 1 - g), (1 - g, 1 + g), (1 - g, 1 - g)\}$, and $z_2 \in \{z_{2h}^{hh}, z_{2}^{hl}, z_{2}^{lh}, z_{2}^{ll}\}$, where the superscript denotes the state of home and foreign endowments. Finally, there are only two types of households in each country: Mertonian traders and nonparticipants. We continue to use the superscripts \(me\) and \(np\) to represent the Mertonian traders and the nonparticipants, respectively. Both types are assumed to have the same initial wealth and endowment in the first period, denoted by $Y_1$ and $W_1$, respectively. The notations for the two-period model follow those in the previous subsections except that the time subscripts are restricted to $t = 1, 2$.

First, consider the budget constraints for the home Mertonian traders:

\[
Y_1 + W_1 = c_{1}^{me} + a_{2}^{me}, \\
c_{2}^{me}(z_2) = \alpha I(z_2) + R_{2}^{p}(z_2)a_{2}^{me},
\]

where $R_{2}^{p}(z)$ is the portfolio return of Mertonian investors.

Next, the budget constraints for the home nonparticipants are

\[
Y_1 + W_1 = c_{1}^{np} + a_{2}^{np}, \\
c_{2}^{np}(z_2) = \alpha I(z_2) + R_{2}^{f}a_{2}^{np},
\]

where the risk-free rate, $R_{2}^{f}$, is the return for nonparticipants.
3.8.1 Volatility and Correlation of Pricing Kernels

The second-period budget constraints suggest that both types of traders have the same exposure to the nondiversifiable income risk, \( \alpha I(z_2) \). However, the diversifiable income of the non-Mertonian traders is constant across the state, which has zero exposure to the aggregate risk. Therefore, the second-period consumption of the Mertonian traders has higher aggregate risk exposure than that of the nonparticipants. Hence, the Mertonian traders have more volatile consumption growth than the nonparticipants. The concentration of risk among Mertonian traders is the main mechanism generating the volatile pricing kernels.

Specifically, first let us consider the two aggregate states, \( z_{2}^{hh} \) and \( z_{2}^{ll} \). In these two states, both countries are symmetric, thus the RER must be 1: \( e(z_{2}^{hh}) = e(z_{2}^{ll}) = 1 \). In other words, there is no exchange rate risk in these two states. The non-diversifiable income, which is the same for both types of traders, can be simplified to:

\[
\alpha I(z_2) = \alpha \left[ q_n(z_2)Y_n(z_2) + \frac{q^*_e(z_2)}{e(z_2)}Y_e(z_2) \right] = \alpha \left[ \theta + \frac{(1 - \theta)}{e(z_2)} C^*(z_2) \right] C(z_2) = \alpha C(z_2),
\]

where the first equality uses the property that the expenditure shares on the export good and the nontraded good are \( \theta \) and \( 1 - \theta \), respectively (see Appendix A.4 for details).

As a result, the nonparticipants’ consumption share in period 2 in these two states becomes

\[
\frac{c_{np}(z_{2}^{hh})}{C(z_{2}^{hh})} = \alpha + \frac{R^f_{2} \theta_{2}^{np}}{C(z_{2}^{hh})} \quad \text{and} \quad \frac{c_{np}(z_{2}^{ll})}{C(z_{2}^{ll})} = \alpha + \frac{R^f_{2} \theta_{2}^{np}}{C(z_{2}^{ll})}
\]

Given \( C(z_{2}^{hh}) > C(z_{2}^{ll}) \), the consumption share of the nonparticipants is higher in the bad state, \( z_{2}^{ll} \), than that in the good state, \( z_{2}^{hh} \). To clear the market, the consumption share of Mertonian traders has to be the opposite. This implies that the nonparticipants bear less aggregate risk compared with the Mertonian traders. Therefore, the Mertonian traders’ consumption in period 2 must be higher in \( z_{2}^{hh} \) and lower in \( z_{2}^{ll} \). This is why the pricing kernel, which depends on the Mertonian traders’ consumption growth, is volatile.

In the remaining aggregate states, \( z_{2}^{hl} \) and \( z_{2}^{lh} \), these two countries have opposite direction of consumption growth rates unless \( \theta = 0.5 \). Hence, there is a risk sharing opportunity for these two states among the Mertonian traders. The Mertonian traders still load up aggregate risk in this state, while they can share risk with others by trading state-contingent claim across countries.
Their risk-sharing behaviors also mitigate the movement of the RER and increase the consumption growth correlation among Mertonian traders across countries. However, if the total income of nonparticipants has zero exposure to the aggregate risk, then the consumption growth correlation among the Mertonian traders have to be negative in these two states, which can significantly lower the correlation of the pricing kernels. Hence, some degree of aggregate risk exposure for the nonparticipants’ nondiversifiable income play an essential role for weakening the negative correlation of the pricing kernels in these two states. To see why, consider the state $z_2^{hl}$ as an example. In this state, the consumption of the nonparticipants is given by

$$c^{np}(z_2^{hl}) = \alpha \left[ \theta C(z_2^{hl}) + \frac{(1 - \theta)}{e(z_2^{hl})} C^*(z_2^{hl}) \right] + R_2^f a_2^{np},$$

which tends to increase (with $\theta > 0.5$) because of the aggregate risk exposure on the nondiversifiable income.

4 Quantitative Results

We calibrate our model to evaluate the extent to which our model can account for the international correlation in pricing kernels, the volatility of the pricing kernel and the volatility of the RER seen in the data. Our benchmark model considers a symmetric two-country model in which both countries have identical preferences, portfolio restrictions, and shock processes. The benchmark model is calibrated to match several key features of data, including the data on trade in goods and assets. We then perform a number of counterfactual exercises to examine the effects of a home bias in consumption as well as heterogenous portfolio choices on the dynamics behaviors of the RER and asset pricing.

In subsection 4.4, we demonstrate the effects of a home bias in consumption by varying the parameter $\theta$. In addition, in subsection 4.5, we consider changes in the trader pool to highlight the role of equity market participation. The last subsection removes the heterogeneity of trading technologies – while keeping the home bias in consumption – to emphasize the importance of different trading technologies.
4.1 Calibration

The home country in our model is set to the United States. The foreign country is an aggregation of four countries: France, Germany, Japan, and the United Kingdom. We collect annual data from International Financial Statistics from 1980 to 2012. The share of U.S. gross domestic product (GDP) in our hypothetical world economy is on average 52%, which is close to half. Thus, we assume an equal size for home and foreign economies. For simplicity and the demonstration of our mechanism, we set parameters such that the two economies are fully symmetric. Given that condition, all the parameters we calibrate applied to both countries.

According to our data, the trade to GDP in our hypothetical world is 0.32. Since there are only export and non-tradable goods in our model, we set the home bias parameter, $\theta$, to one minus half of the trade to GDP ratio, which is 0.84. This calibration is based on that $\theta$ is also the share of the home goods in final consumption expenditure in our model. Given $\theta$, the consumption growth process in each country is pinned down by the endowment process because of the preference assumption. The innovation terms in the output shock process, or $\varepsilon$ and $\varepsilon^*$, are calibrated into a four-state first-order Markov chain to match the following statistics: (1) The consumption growth correlation between two countries is 0.172 (2) The average consumption growth of each country is 2.13% with a standard deviation of 2.36% and (3) $\rho$ is set to 0.95. The resulting correlation of home and foreign endowment growth is $-0.21$.

We also consider a two-state first-order Markov chain for idiosyncratic shocks. The first state is low and the second state is high. Following Storesletten, Telmer, and Yaron (2004), we calibrate this shock process by two moments: the standard deviation of idiosyncratic shocks and the first-order autocorrelation of shocks, except that we eliminate the countercyclical variation in idiosyncratic risk. The Markov process for the log of the nondiversifiable income, or $\log \eta$, has a standard deviation of 0.71 and its autocorrelation is 0.89. The transition probability is denoted by

$$
\pi(\eta' | \eta) = \begin{bmatrix} 0.9450 & 0.0550 \\ 0.0550 & 0.9450 \end{bmatrix}.
$$

The two states of the idiosyncratic shocks, whose mean is normalized to 1, are $\eta_L = 0.3894$ and $\eta_H = 1.6106$.

Following Mendoza, Quadrini, and Rios-Rull (2009), the fraction of nondiversifiable output is set to 88.75%. As shown in Section 3, equities in our model are simply leveraged claims to diversifiable
income. Following Abel (1999) and Bansal and Yaron (2004), the leverage ratio parameter is set to 3.

The model operates at an annual frequency. We set the time discount factor $\beta = 0.95$ to deliver the low risk-free rate. The risk-aversion rate $\gamma$ is set to 5.5 to help to produce a high risk premium in our benchmark calibration.

To match a high market price of risk, a small fraction of Mertonian traders must absorb a large amount of aggregate risk. We therefore set the fraction of Mertonian traders to 5% for both countries. Since 50% of U.S. investors do not hold stocks (according to the 2010 Survey of Consumer Finance data), we set 50% of investors as nonparticipants. The remaining investors are non-Mertonian equity investors, and they represent 45%. Their portfolio is assumed to be market portfolio. With the leverage is set to 3, the shares of home equities and the home risk-free bonds of a market portfolio are 25% and 75%, respectively.

### 4.2 Computation

The equilibrium RER in our model is stationary. Thanks to the assumption of symmetry, the endowment processes of both countries share the same trend. Therefore, the ratio of aggregate consumption between these two countries is stationary. Since the consumption shares of each type of trader are bounded above and below, the ratio of consumption of home to foreign domestic traders has to be finite and stationary. The RER is also equal to the relative marginal utility of consumption between home and foreign unconstrained Mertonian investors. Therefore, the RER is stationary if there is a nonzero measure of non-binding Mertonian traders for both countries in every possible state, because the relative consumption share of home and foreign Mertonian investors is stationary.

Given that the RER $e_t$ is stationary, it cannot depend on the entire aggregate history $z^t$. Importantly, $h$ and $h^*$ do depend on the entire aggregate history, but the log difference, which determines the RER, has to be stationary. In other words, $h$ and $h^*$ have to share the same stochastic trend for the RER to be stationary.

We use $z_k \in \mathcal{A}$ as summary statistics for the aggregate history in each country. We assume that the level of the RER depends only on the summary statistics $z_k$. The RER at a grid point
$z_k \in \mathcal{A}$ can be derived from the pricing kernels as follows:

$$e_t(z_k) = \frac{P(z_k)}{P^*(z_k)} = \frac{C(z_k)^{-\gamma} h(z_k)^\gamma}{C^*(z_k)^{-\gamma} h^*(z_k)^\gamma} = \left(\frac{m_t^*(z_k)}{m_t(z_k)}\right)^{-\gamma(1-2\theta)} \frac{h(z_k)^\gamma}{h^*(z_k)^\gamma},$$

where $P$ and $P^*$ denote for time-zero prices for home and foreign consumption, respectively (see Appendix A for details).

We define $\ln\left(\frac{h(z_k)}{h^*(z_k)}\right) \equiv b(z_k)$. Given the stationarity condition, the RER can be written only as a function of the summary statistics for aggregate history:

$$\ln e(z_k) = \gamma(2\theta - 1) \ln\left(\frac{m^*(z_k)}{m(z_k)}\right) + \gamma b(z_k)$$

(11)

In our computation, we record the growth rate of $h$ and $h^*$. Given the stationarity of $e_t$, the innovation in $h$ at home and abroad has to satisfy

$$\ln\left(\frac{h(z'_k)}{h(z_k)}\right) - \ln\left(\frac{h^*(z'_k)}{h^*(z_k)}\right) = b(z'_k) - b(z_k) \equiv \Delta(z'_k, z_k).$$

(12)

Given $\{b(z_k), \ln\left(\frac{h(z'_k)}{h(z_k)}\right), \ln\left(\frac{h^*(z'_k)}{h^*(z_k)}\right)\}$, we can completely characterize an equilibrium of this economy, because we have the equilibrium prices, the RERs, and the allocations. See Appendix B for details.

### 4.3 Quantitative Results of the Benchmark Case

We report the model statistics for the benchmark case in Table III. Taking the standard deviation of equation (7) together with the assumption of symmetric countries, the standard deviation of RER depreciation in our model is determined by the moments of pricing kernels as follows:

$$\sigma(\Delta \ln e_{t+1}) = \sigma(\ln Q) \sqrt{2(1 - \rho(\ln Q, \ln Q^*))}.$$  

(13)

According to (13), the standard deviation of RER depreciation is increasing in the standard deviation of the pricing kernels and decreasing in the international correlation in the pricing kernels.
Our benchmark economy delivers high volatility and high correlation of pricing kernels, and these statistics are extremely close to the observed statistics. The standard deviation of the pricing kernels in the model is 0.42 and the correlation of the pricing kernels is 97.5%. According to (13), these statistics imply that the standard deviation of RER depreciation is 9.4%, whereas the observed volatility is 13%. Hence, our calibrated model is capable of producing reasonable volatility of the RER and the pricing kernels, despite the low international correlation in aggregate consumption.

The success of matching the pricing data under very limited consumption risk sharing relies on two mechanisms governing the two moments in (13). The first mechanism is the uneven distribution of aggregate risk across population. The uneven distribution of risk is caused by investors’ heterogeneous portfolio choices. Given that the non-Mertonian investors bear only a relatively small share of the aggregate risk, most of the aggregate risk is borne by Mertonian investors. The concentration of risk among a small set of investors leads to high volatility of the pricing kernels. The second mechanism relies on the ability of the Mertonian investors in the two countries to share country-specific component of aggregate risks among themselves. Therefore, their consumption tends to synchronize, which produces highly correlated pricing kernels.

Also, as a group consumption and portfolio choices of the Mertonian investors are less restricted by the presence of nontraded consumption than those of the non-Mertonian investors because they represent only a small share of the population. However, if the international trade in goods is completely shut down, then there is no reasons for Mertonian investors to hold any external asset. We demonstrate in the next subsection that international trade is essential for the Mertonian investors to share risk across countries.

In Table III last three rows shows the moments of consumption by investor group. The correlation of consumption and aggregate consumption for the non-Mertonian traders is almost perfect, 0.975, and the corresponding correlation for the Mertonian traders is much lower, 0.725. The correlation of consumption and income is higher for the non-Mertonian equity traders. We can compare this ranking with the estimates of income elasticity of demand in Hummels and Lee (2013). These authors use the U.S. consumer expenditure survey (CEX) data from 1994 to 2010 to estimate the income elasticity of demand for export goods for each percentile of income distribution. They find that the investors’ income elasticity of demand for export goods is decreasing in household income. In our model, the income elasticity of demand for export goods is identical to the income elasticity of demand for final consumption. Therefore, our ranking of the income elasticity of demand will be
consistent with theirs if the Mertonian traders have higher income than the non-Mertonian equity traders. This is the case in our model, because the Mertonian traders accumulate a larger amount of high-return assets than the non-Mertonian equity traders.

The last row in Table III shows the standard deviation of the Mertonian traders’ consumption relative to the standard deviation of the non-Mertonian equity traders consumption. This ratio in our model is 3.970, indicating that the Mertonian traders’ consumption is more volatile. There are two reasons for this. First, the Mertonian traders share aggregate risk among themselves, while the non-Mertonian equity traders do not. Second, the idiosyncratic income shocks do not matter to volatility of aggregate consumption within the group, thanks to the assumption of the law of large numbers. The ranking of consumption volatility in our model is consistent with the evidence in Parker and Vissing-Jorgensen (2009). Using the CEX survey data from 1982 to 2004, they find that the top 5% of investors are estimated to be about 4.5 times more exposed to aggregate consumption shocks than those in the bottom 80%.

[Table 3 about here.]

4.4 Impacts of Home Bias in Consumption

In this subsection, we investigate the role of a home bias in consumption. Intuitively, without a home bias in consumption and without the nontraded good, the law of one price holds and the RER is constant. In this case, investors achieve full risk sharing through international goods markets regardless of frictions in financial markets. To the contrary, if there is no trade due to either a complete home bias or prohibitively large trade frictions, then there will be no incentives for investors to hold external assets. Intuitively, we interpret a larger consumption home bias as increasing international trade frictions.

To explore the impacts of a home bias in consumption on the RER volatility, we consider two exercises. First, we increase the share of the home goods in final consumption expenditure from 0.84 to 0.95, which significantly reduces the volume of trade in goods. The second column of Table IV shows these results. There is virtually no change in the volatility of pricing kernel, while the correlation of pricing kernels drops from 0.975 to 0.892.

A higher degree of home bias in consumption implies that consumers are less inclined to consume the foreign good and hence reduces the incentive to share the country-specific risk with foreign consumers. As a result, the international correlation in consumption growth falls from 16.9% to
−10.9%. The fall in the correlation of consumption growth can also be understood by equation (6). As $\theta$ approaches unity, the correlation of consumption growth approaches to the correlation of endowment growth, which is −21%.

Evidently, a high degree of home bias in consumption significantly reduces the correlation in the pricing kernels, even though only a small fraction of investors are sharing the country-specific risk. Given equation (13), conditioning on unchanged volatility of the pricing kernels, the sharp fall in the correlation in the pricing kernels produces a sharp increase – as much as 20% – in the RER volatility. The magnitude is more than double that in the benchmark case. Such a positive impact of a home bias in consumption on the RER volatility is similar to the model by Warnock (2003), in which the RER is volatile as a result of nominal shocks.

The second exercise involves the removal of home bias in consumption by setting the share of the nontraded goods in consumption expenditure at 0.5. The third column of Table IV confirms that without a home bias in consumption the RER is not volatile, although the pricing kernel is as volatile as in the benchmark case. In this case, the domestic pricing kernel is perfectly correlated with the foreign pricing kernel, as predicted by equation (6), and consequently international risk sharing is complete. Therefore, according to (13) the perfect correlation in pricing kernels produces zero standard deviation of the RER.

These two exercises demonstrate that the home bias in consumption is necessary for generating RER volatility, although a too-high degree of home bias in consumption can generate higher RER volatility than the data. In other words, international trade in goods is critical for international risk sharing. The introduction of frictions in both international trade and finance is novel compared with the existing models, that explain RER volatility as a result of international trade in assets without international trade in goods, such as Alvarez, Atkeson, and Kehoe (2002) and Colacito and Croce (2011). Moreover, our finding is supported by the recent empirical evidence of Fitzgerald (2012). She finds that trade costs impede risk sharing among developed countries, but financial frictions do not impede risk sharing among them. Her finding suggests that international trade in goods is necessary for international risk sharing, as in our model.
4.5 Changes in Composition of Traders

In this subsection, we vary the composition of traders to examine the impacts of distribution of aggregate risk on the volatility of the RER, that of the pricing kernels, the international correlation of pricing kernels, and that of consumption growth.

First, we consider two special cases. The first one corresponds to the standard heterogeneous agents economy, such as Krusell and Smith (1998). The second one works like the standard segmented market model where all equity investors are marginal traders. These two model economies can be quantitatively evaluated under our framework by simply varying the composition of traders. For the first case, all the traders is set to Mertonian households. As for the segmented market case, a half of the population are non-participants according to the SCF data as in our benchmark case. The rest 50% of population are equity market participants, for whom we set all them as Mertonian traders, following the calibration strategy in the segmented market literature.

The second column of Table V reports the result of first case. The RER volatility, 13.1%, is happened to be a right number to match the data. However, the volatility of pricing kernel, only 0.131, is way too smooth that obviously violates the Hansen-Jagannathan bounds. The reason is that aggregate risk is equally distributed over the entire population, especially within a country. Since all investors respond to the change in investment opportunities in every period by optimally adjusting their portfolios and make no investment mistakes. Consequently, there is no residual risk to share across borders. For this reason, the correlation of the pricing kernels falls significantly from 0.975 to only 0.387.

What happens with the segmented market case? The third column of Table V reports the answers. Compared to teh previous case, now a half of the population do not participate the equity market and create residual aggregate risks. However, there are still another half of population who can absorb the residual risks and hence the aggregate risks are not concentrated enough in order to produce a reasonable asset pricing results. The pricing kernel volatility rises to 0.189 from 0.119 of the first case while it is still far below from the prediction of the data by Hansen-Jagannathan bounds. The correlation of pricing kernel is 0.668, which is between the benchmark and the first case. Therefore, it is quantitatively important to distinguish the difference between marginal traders from the equity market participants as suggested by the empirical studies of household finance.

[Table 5 about here.]
Second, we vary equity market participation rate by changing the relative size of population between the nonparticipants and the non-Mertonian equity traders, while keeping the size of the Mertonian traders constant. In columns (2) and (3) of Table VI, we reduce the size of the non-participants from 50% to 40% and 30%, respectively. The results show that, as the equity market participation rate increases, country-specific risk becomes less concentrated among the Mertonian traders. Thus, the volatility of pricing kernel risk falls as the equity market participation rate increases. A 10% increase in the equity market participation rate reduces the standard deviation of the pricing kernels by roughly 3% to 4%.

Since the equity portfolio held by the new equity traders is biased toward the domestic equity, their increasing participation forces the Mertonian traders to bear relatively higher residual risk from abroad. As a result, the Mertonian traders increase risk sharing across borders and, as a result, the correlation of the pricing kernels increases. A 10% increase in the equity market participation rate raises the correlation by 0.1% to 0.2%. Overall, according to equation (13), both the increase in the correlation of the pricing kernels and the decrease in their volatility reduce the RER volatility. Quantitatively, a 10% increase in the equity market participation rate reduces the standard deviation of the RER by roughly 1%.

Finally, we vary the composition of the equity market participants, holding the population size of nonparticipants unchanged. In columns 4-5 of Table VI, we increase the population size of the Mertonian traders from 5% to 10% and then to 20%, respectively. As the size of the Mertonian traders increases, aggregate risk becomes less concentrated among them. Thus, the volatility of the pricing kernels falls. As the size of the Mertonian traders increases from 5% to 10% and 10% to 20%, the standard deviation of the pricing kernels falls 7.9% and 8.2%, respectively.

In addition, an increase in the size of the Mertonian traders reduces the residual risk that is shared with their foreign counterparts; therefore the correlation of pricing kernels decreases. As we increase the size of the Mertonian traders in columns (4) and (5), the correlation of the pricing kernels falls from 97.5% to 95.7% and to 90.5%, respectively.

According to equation (13), the decrease in the correlation of the pricing kernels and the decrease in their volatility have competing effects on the RER volatility. Quantitatively, the decrease in the correlation of the pricing kernels dominates and the RER volatility increases as a result of an increase in the size of the Mertonian traders.

[Table 6 about here.]
5 Conclusion

We use a general equilibrium model with asset trading restrictions and consumption home bias to demonstrate that RER volatility is related to frictions in both goods and financial markets. The asset trading restrictions imposed in our model are in line with the empirical evidence in the household finance literature. With a realistic assumption that most investors do not actively participate in the domestic and foreign equity markets, we reconcile highly correlated and volatile pricing kernels with low correlation in consumption growth.

The insight from our model is that the high cross-country correlation in the pricing kernels is not necessarily evidence of a high degree of international risk sharing. In particular, international risk sharing is aggressively undertaken by a small fraction of sophisticated investors facing no restrictions on asset trade. Despite the small size of fraction, these marginal investors are the arbitrageurs and their portfolio adjustment determines RER volatility. In fact, their portfolio adjustment still generates a positive while far from perfect correlation between the RER and relative consumption growth, as in equation (7). Hence, our model has not totally solved the Backus-Smith puzzle, which documents a zero or even a slightly negative correlation between the RER and relative consumption growth.
References


Table I: Descriptive statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sample size</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(\Delta c_{it}, \Delta c_{jt})$</td>
<td>650</td>
<td>0.37</td>
<td>0.21</td>
<td>-0.24</td>
<td>0.79</td>
</tr>
<tr>
<td>$(y_i + y_j) - (y_i + y_j)$</td>
<td>650</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Log of distance</td>
<td>650</td>
<td>7.25</td>
<td>0.61</td>
<td>4.29</td>
<td>8.67</td>
</tr>
<tr>
<td>Border dummy</td>
<td>650</td>
<td>0.02</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: $i$ is index of U.S. states, and $j$ is index of Canada’s provinces and territories. $c_{it}$ and $c_{jt}$ are logarithm of per capita consumption in state $i$ and province/territory $j$ in year $t$. $y_i$ and $y_j$ are the average over time of logarithm of per capita income in state $i$ and province/territory $j$. 
Table II: Regression Result: Dependent variable is consumption growth correlation

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean deviation of combined income</td>
<td>4.992*** (0.840)</td>
<td>4.991*** (0.839)</td>
<td>4.740*** (0.841)</td>
<td>4.707*** (0.840)</td>
</tr>
<tr>
<td>Log of distance</td>
<td>-0.043*** (0.014)</td>
<td>-0.042*** (0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border dummy</td>
<td>-0.009 (0.057)</td>
<td>0.056 (0.053)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.685*** (0.104)</td>
<td>0.678*** (0.096)</td>
<td>0.373*** (0.008)</td>
<td>0.374*** (0.008)</td>
</tr>
<tr>
<td>Sample size</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>F test</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: Standard errors are in parentheses. ***, **, and * denotes statistical significance at 10%, 5% and 1%, respectively.
Table III: Benchmark Results

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\ln Q) = \sigma(\ln Q^*)$</td>
<td>0.423</td>
<td>0.40</td>
</tr>
<tr>
<td>$\sigma(\Delta \ln e)$</td>
<td>0.094</td>
<td>0.13</td>
</tr>
<tr>
<td>$\rho(\ln Q, \ln Q^*)$</td>
<td>0.975</td>
<td>0.95</td>
</tr>
<tr>
<td>$\rho(\Delta \ln C, \Delta \ln C^*)$</td>
<td>0.169</td>
<td>0.171</td>
</tr>
<tr>
<td>$\rho(\Delta \ln c, \Delta \ln C)_{Mertonian}$</td>
<td>0.725</td>
<td>Low</td>
</tr>
<tr>
<td>$\rho(\Delta \ln c, \Delta \ln C)_{Non-Mertonian}$</td>
<td>0.975</td>
<td>High</td>
</tr>
<tr>
<td>$\frac{\sigma(\Delta \ln c)<em>{Mertonian}}{\sigma(\Delta \ln c)</em>{Non-Mertonian}}$</td>
<td>3.970</td>
<td>4.5</td>
</tr>
</tbody>
</table>

The simulation results are based on 18,000 agents for each type and 10,000 periods.
Table IV: Results of Variation in Home Bias in Consumption

<table>
<thead>
<tr>
<th></th>
<th>Benchmark: $\theta = 0.84$</th>
<th>$\theta = 0.95$</th>
<th>$\theta = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\ln Q) = \sigma(\ln Q^*)$</td>
<td>0.423</td>
<td>0.435</td>
<td>0.419</td>
</tr>
<tr>
<td>$\sigma(\Delta \ln e)$</td>
<td>0.094</td>
<td>0.202</td>
<td>0</td>
</tr>
<tr>
<td>$\rho(\ln Q, \ln Q^*)$</td>
<td>0.975</td>
<td>0.892</td>
<td>1</td>
</tr>
<tr>
<td>$\rho(\Delta \ln C, \Delta \ln C^*)$</td>
<td>0.169</td>
<td>$-0.109$</td>
<td>1</td>
</tr>
</tbody>
</table>

The simulation results are based on 18,000 agents for each type and 10,000 periods.
Table V: Two Special Cases

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size of investors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mertonian</td>
<td>0.05</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Non-Mertonian Equity</td>
<td>0.45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>0.50</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>$\sigma(\ln Q) = \sigma(\ln Q^*)$</td>
<td>0.423</td>
<td>0.119</td>
<td>0.189</td>
</tr>
<tr>
<td>$\sigma(\Delta \ln e)$</td>
<td>0.094</td>
<td>0.131</td>
<td>0.154</td>
</tr>
<tr>
<td>$\rho(\ln Q, \ln Q^*)$</td>
<td>0.975</td>
<td>0.387</td>
<td>0.668</td>
</tr>
</tbody>
</table>

The simulation results are based on 18,000 agents for each type and 10,000 periods.
Table VI: Results of Variations in the Trader Pool

<table>
<thead>
<tr>
<th>Population size of investors</th>
<th>(1) Benchmark</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mertonian</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Non-Mertonian Equity</td>
<td>0.45</td>
<td>0.55</td>
<td>0.65</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Nonparticipants</td>
<td>0.50</td>
<td>0.40</td>
<td>0.30</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>$\sigma(\ln Q) = \sigma(\ln Q^*)$</td>
<td>0.423</td>
<td>0.396</td>
<td>0.360</td>
<td>0.344</td>
<td>0.262</td>
</tr>
<tr>
<td>$\sigma(\Delta \ln e)$</td>
<td>0.094</td>
<td>0.087</td>
<td>0.076</td>
<td>0.101</td>
<td>0.115</td>
</tr>
<tr>
<td>$\rho(\ln Q, \ln Q^*)$</td>
<td>0.975</td>
<td>0.976</td>
<td>0.978</td>
<td>0.957</td>
<td>0.905</td>
</tr>
</tbody>
</table>

The simulation results are based on 18,000 agents for each type and 10,000 periods.


A Time-Zero Trading Household Problem

A.1 Time-Zero Trading

We describe an equivalent version of this economy in which all households trade at time zero. The time-zero price of a claim that pays one unit of consumption in node $z^t$ can be constructed recursively from the one-period-ahead Arrow prices:

\[ P(z^t)\pi(z^t) = Q(z_t|z^{t-1})Q(z_{t-1}|z^{t-2})...Q(z_1|z^0)Q(z_0), \]

\[ P^*(z^t)\pi(z^t) = Q^*(z_t|z^{t-1})Q^*(z_{t-1}|z^{t-2})...Q^*(z_1|z^0)Q^*(z_0). \]

The real exchange rate is the ratio of Arrow-Debreu prices in node $z^t$:

\[ e_t(z^t) = \frac{P(z^t)}{P^*(z^t)}. \]

The net financial wealth position of any trader in the home country given the history can be stated as

\[ -a_t(z^t, \eta^t) = \sum_{s \geq t} \sum_{(z^s, \eta^s) \geq (z^t, \eta^t)} \tilde{P}(z^s, \eta^s) [\alpha I(z^s)\eta_s - c(z^s, \eta^s)], \]

where $\tilde{P}(z^t, \eta^t) = \pi(z^t, \eta^t)P(z^t)$. Similarly, the asset position of any foreign trader is

\[ -a^*_t(z^t, \eta^*t) = \sum_{s \geq t} \sum_{(z^s, \eta^*s) \geq (z^t, \eta^*t)} \tilde{P}^*(z^s, \eta^*s) [\alpha I^*(z^t)\eta_{st} - c^*(z^s, \eta^*s)], \]

where $\tilde{P}^*(z^t, \eta^t) = \pi(z^t, \eta^t)P^*(z^t)$. From the above equation, we are able to write the household problem in the form of time-zero trading fashion as shown in the next subsection.

A.2 Household Optimization Problem

Following Chien, Cole, and Lustig (2011), we state the household problem in this Arrow-Debreu economy.
A.2.1 Mertonian Traders

We start with the Mertonian traders’ problem in the home country. There are two constraints. Let $\chi$ denote the multiplier on the present value budget constraint and $\varphi(z^t, \eta^t)$ denote the multiplier on debt constraints. The saddle-point problem of a Mertonian trader can be stated as follows:

$$L = \min_{\{\chi, \nu, \varphi\}} \max_{\{c, a\}} \sum_{t=1}^{\infty} \beta_t \left[ 1 - \gamma c(z^t, \eta^t) \right]^{1-\gamma} \pi(z^t, \eta^t)$$

$$+ \chi \left\{ \sum_{t=1}^{\infty} \sum_{(z^t, \eta^t)} \bar{P}(z^t, \eta^t) \left[ \alpha I(z^t) \eta_t - c(z^t, \eta^t) \right] + a_0(z^0) \right\}$$

$$- \sum_{t=1}^{\infty} \sum_{(z^t, \eta^t)} \varphi_t(z^t, \eta^t) \left\{ \sum_{s=t}^{\infty} \sum_{(z^s, \eta^s) \geq (z^t, \eta^t)} \bar{P}(z^s, \eta^s) \left[ \alpha I(z^s) \eta_s - c(z^s, \eta^s) \right] \right\}.$$

The first-order condition with respect to consumption is given by

$$\beta^t c(z^t, \eta^t)^{-\gamma} = \zeta(z^t, \eta^t) P(z^t) \text{ for all } (z^t, \eta^t), \quad (14)$$

where $\zeta(z^t, \eta^t)$ is defined recursively as

$$\zeta_t(z^t, \eta^t) = \zeta_{t-1}(z^{t-1}, \eta^{t-1}) - \varphi_t(z^t, \eta^t),$$

with initial $\zeta_0 = \chi$. It is easy to show that this is a standard convex constraint maximization problem. Therefore, the first-order conditions are necessary and sufficient.

A.2.2 Non-Mertonian Traders

Non-Mertonian traders face additional restrictions on their portfolio choices. Let $\nu_t(z^t, \eta^t)$ denote the multiplier on portfolio restrictions. Given the same definition of other multipliers as in the
active trader problem, the saddle-point problem of a nonparticipant trader whose asset in the end of the period is $\tilde{a}_{t-1}(z^{t-1}, \eta^{t-1})$ in the home country can be stated as

$$L = \min_{\{x, \nu, \phi\}} \max_{\{c, \hat{a}\}} \sum_{t=1}^{\infty} \beta^t \sum_{(z^t, \eta^t)} \frac{1}{1 - \gamma} c_t(z^t, \eta^t)^{1-\gamma} \pi(z^t, \eta^t)$$

$$\chi \left\{ \sum_{t=1}^{\infty} \sum_{(z^t, \eta^t)} \tilde{P}(z^t, \eta^t) [\alpha I(z^t)\eta_t - c(z^t, \eta^t)] + a_0(z^0) \right\}$$

$$+ \sum_{t=1}^{\infty} \sum_{(z^t, \eta^t)} \nu_t(z^t, \eta^t) \left\{ \sum_{s \geq t} \sum_{(z^s, \eta^s) \geq (z^t, \eta^t)} \tilde{P}(z^s, \eta^s) [\alpha I(z^s)\eta_s - c(z^s, \eta^s)] \right\}$$

$$- \sum_{t=1}^{\infty} \sum_{(z^t, \eta^t)} \varphi_t(z^t, \eta^t) \left\{ \sum_{s \geq t} \sum_{(z^s, \eta^s) \geq (z^t, \eta^t)} \tilde{P}(z^s, \eta^s) [\alpha I(z^s)\eta_s - c(z^s, \eta^s)] \right\}.$$

The first-order condition with respect to consumption is given by

$$\beta^t c_t(z^t, \eta^t)^{1-\gamma} = \zeta_t(z^t, \eta^t) P(z^t) for all (z^t, \eta^t),$$

where $\zeta_t(z^t, \eta^t)$ is defined as

$$\zeta_t(z^t, \eta^t) = \zeta_{t-1}(z^{t-1}, \eta^{t-1}) + \nu_t(z^t, \eta^t) - \varphi_t(z^t, \eta^t).$$

Therefore, the first-order condition with respect to consumption is independent of trading restrictions. The first-order condition with respect to total asset holdings at the end of period $t - 1$, $\tilde{a}_{t-1}(z^{t-1}, \eta^{t-1})$, is

$$\sum_{(z^t, \eta^t)} R^p_{i, t-1}(z^t) \nu_t(z^t, \eta^t) P(z^t) \pi(z^t; \eta^t) = 0 for all z^t, \eta^t.$$
This condition varies according to different trading restrictions.

A.2.3 First-Order Condition of Foreign Households

Similarly, the first-order condition (FOC) respect to consumption for all foreign investors is

$$\beta^t c^*(z^t, \eta^*; t) = \zeta^*(z^t, \eta^*; t) P^*(z^t) \text{ for all } (z^t, \eta^*; t),$$

and the first-order condition with respect to the asset choice for foreign non-Mertonian traders is

$$\sum_{(z^t, \eta^*; t)} R_{i,t-1}^\nu (z^t) \nu_i^* (z^t, \eta^*; t) P^* (z^t) \pi (z^t, \eta^*; t) = 0 \text{ for all } z^t, \eta^*; t.$$

A.3 Stochastic Discount Factor

By summing the first-order conditions with respect to consumption, equation (14), across all domestic households at period $t$, we can obtain the consumption sharing rule (equation (8) in the main text) as follow:

$$\frac{c(z^t, \eta^t)}{C(z^t)} = \frac{\zeta(z^t, \eta^t)^{1/\gamma}}{h_t(z^t)},$$

where $h_t(z^t)$ is defined as $h_t(z^t) = \sum_{\eta^t} \zeta(z^t, \eta^t)^{-\frac{1}{\gamma}}$. In addition, by plugging back the consumption sharing rule back to the first order condition with respect to consumption, equation (14), we can obtain the price of home consumption basket at state $z^t$:

$$P(z^t) = \beta^t C(z^t)^{-\gamma} h_t(z^t)^{\gamma}$$
Therefore, the home stochastic discount factor is given by the Breeden-Lucas stochastic discount factor (SDF) with a multiplicative adjustment:

\[ Q_{t+1}(z^{t+1}|z^t) \equiv \frac{P(z^{t+1})}{P(z^t)} = \beta \left( \frac{C(z^{t+1})}{C(z^t)} \right)^{-\gamma} \left( \frac{h_{t+1}(z^{t+1})}{h_t(z^t)} \right)^{\gamma}. \]

Similarly, we can derive the stochastic discount factor of the foreign country:

\[ Q^*_{t+1}(z^{t+1}|z^t) \equiv \frac{P^*(z^{t+1})}{P^*(z^t)} = \beta \left( \frac{C^*(z^{t+1})}{C^*(z^t)} \right)^{-\gamma} \left( \frac{h^*_{t+1}(z^{t+1})}{h^*_t(z^t)} \right)^{\gamma}. \]

### A.4 Price of the Final Consumption Good

We start by analyzing the home country’s price index. Let \( P(z^t) \) be the price level in the home country. The price level represents the minimum expenditure on \( c(z^t) = c_n(z^t, \eta^t)\theta_c(z^t, \eta^t)^{1-\theta} \). To find the price level, we solve the cost minimization problem:

\[
\max_{Y_n(z^t), Y_x(z^t)} P(z^t)Y_n(z^t)^\theta Y_x(z^t)^{1-\theta} - P_n(z^t)Y_n(z^t) - P_x(z^t)Y_x(z^t). \]

The first-order condition implies that

\[
\frac{P_n(z^t)}{P(z^t)} = \theta Y_n(z^t)^{\theta-1} Y_x(z^t)^{1-\theta} = \theta \frac{C(z^t)}{Y_n(z^t)}
\]

\[
\frac{P_x(z^t)}{P(z^t)} = (1-\theta)Y_n(z^t)^{\theta} Y_x(z^t)^{-\theta} = (1-\theta) \frac{C(z^t)}{Y_x(z^t)}
\]
Next, we analyze the same problem for the foreign country:

\[
\frac{P_n^*(z^t)}{P^*(z^t)} = \theta Y_n^*(z^t)^{\theta-1} Y_x(z^t)^{1-\theta} = \theta \frac{C_n^*(z^t)}{Y_n^*(z^t)}
\]

The first-order condition implies that

\[
\frac{P^*(z^t)}{P^*(z^t)} = (1 - \theta) Y_n^*(z^t)^{\theta} Y_x(z^t)^{-\theta} = (1 - \theta) \frac{C^*(z^t)}{Y_x(z^t)}.
\]

## B Computational Algorithm

In the spirit of Chien, Cole, and Lustig (2011), we develop the following computational algorithm.

**Algorithm 1.** Computational algorithm:

1. Guess a function for the exchange rates \(e_t(z_k)\) as well as the updating rule at home \(\frac{h_t(z)}{h(z)}\) and abroad \(\frac{h^*_t(z)}{h^*(z)}\).

2. Since the consumption process is governed by the endowment shock process, the state-contingent price is determined by

\[
Q(z'_k; z_k) \equiv \frac{P(z'_k)}{P(z_k)} = \beta \left( \frac{C(z'_k)}{C(z_k)} \right)^{-\gamma} \left( \frac{h_t(z'_k)}{h_t(z_k)} \right)^{\gamma}
\]

\[
Q^*(z'_k; z_k) \equiv \frac{P^*(z'_k)}{P^*(z_k)} = \beta \left( \frac{C^*(z'_k)}{C^*(z_k)} \right)^{-\gamma} \left( \frac{h^*_t(z'_k)}{h^*_t(z_k)} \right)^{\gamma}.
\]

3. The level of the exchange rate is given by

\[
e_t(z_k) = \frac{P(z_k)}{P^*(z_k)} = \frac{C(z_k)^{-\gamma} h_t(z_k)^{\gamma}}{C^*(z_k)^{-\gamma} h^*_t(z_k)^{\gamma}} = \left( \frac{m_t(z_k)}{m_t(z_k)} \right)^{-\gamma(1-\theta)} \frac{h_t(z_k)^{\gamma}}{h^*_t(z_k)^{\gamma}}.
\]
4. Given prices, solve the optimization problem of each individual investor.

5. Simulate the economy and derive the implied new exchange rate function, \(e_t(z_k)\), and the new updating rule for \(\frac{h(z'_k)}{h(z_k)}\) and \(\frac{h^*(z'_k)}{h^*(z_k)}\).

6. Compare the original guess with the new implied value. If they are the same, we have an equilibrium; otherwise, we iterate \(e_t(z_k)\), \(\frac{h(z'_k)}{h(z_k)}\), and \(\frac{h^*(z'_k)}{h^*(z_k)}\).

In our simulation panel, we cannot observe \(h\) and \(h^*\) in levels; \(h\) and \(h^*\) are nonstationary, but we need the level of \(h\) to compute the exchange rate. However, \(h\) and \(h^*\) have to share a common stochastic trend, given that \(e\) is stationary. We can derive the growth rate of \(h\) and \(h^*\) as a function of the truncated aggregate histories. The stationarity of \(e_t\) implies that it can be stated as a function of the truncated aggregate history:

\[
\ln \left( \frac{h(z'_k)}{h(z_k)} \right) - \ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right) = b(z'_k) - b(z_k) \equiv \Delta(z'_k, z_k). \tag{15}
\]

If we know \(b(z_k)\) for all possible \(z_k \in \mathcal{A}\), then we know the exchange rate \(e(z_k)\) and \(\Delta(z'_k, z_k)\).

We use \(\overline{H}(z'_k, z_k)\) to denote the average growth rate:

\[
\overline{H}(z'_k, z_k) \equiv \frac{\ln \left( \frac{h(z'_k)}{h(z_k)} \right) + \ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right)}{2}. \tag{16}
\]

From equations (17) and (18), we know that the growth rate of \(h\) in a particular country is given by:

\[
\ln \left( \frac{h(z'_k)}{h(z_k)} \right) = \overline{H}(z'_k, z_k) + \frac{\Delta(z'_k, z_k)}{2},
\]

\[
\ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right) = \overline{H}(z'_k, z_k) - \frac{\Delta(z'_k, z_k)}{2}.
\]
Given this investment in notation, we can now describe the updating process $h(z'_k), h^*(z'_k)$, and $e_t(z')$

**Algorithm 2. Simulation steps:**

1. In each $z_k$, update the growth rate of $h$ and $h^*$, denoted by $\ln \left( \frac{h(z'_k)}{h(z_k)} \right)_{\text{sim}}$ and $\ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right)_{\text{sim}}$, respectively.

2. From equation (18), the updated guess of $H$ is given by

$$H_{\text{new}}(z'_k, z_k) = \frac{\ln \left( \frac{h(z'_k)}{h(z_k)} \right)_{\text{sim}} + \ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right)_{\text{sim}}}{2}.$$

3. The updated guess of $b_{\text{new}}(z_k)$ is the solution of the following minimization problem:

$$b_{\text{new}}(z_k) = \arg \min_{b(z_k)} \left( E \left[ \left( \frac{h(z'_k)}{h(z_k)} - \left( \frac{h(z'_k)}{h(z_k)} \right)_{\text{sim}} \right)^2 \right] + E \left[ \left( \frac{h^*(z'_k)}{h^*(z_k)} - \left( \frac{h^*(z'_k)}{h^*(z_k)} \right)_{\text{sim}} \right)^2 \right] \right),$$

such that

$$\ln \left( \frac{h(z'_k)}{h(z_k)} \right) = H_{\text{new}}(z'_k, z_k) + \frac{\Delta(z'_k, z_k)}{2}$$

$$\ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right) = H_{\text{new}}(z'_k, z_k) - \frac{\Delta(z'_k, z_k)}{2}$$

and

$$\Delta(z'_k, z_k) = b(z'_k) - b(z_k).$$

47
4. The updated guess of \( e(z_k) \) and the growth rate of \( h \) and \( h^* \) are therefore

\[
\ln e_{new}(z_k) = \gamma(2\theta - 1) \ln \left( \frac{m^*(z_k)}{m(z_k)} \right) + \gamma b_{new}(z_k) \tag{17}
\]

\[
\ln \left( \frac{h'(z'_k)}{h(z_k)} \right)_{new} = H_{new}(z'_k, z_k) + \frac{\Delta_{new}(z'_k, z_k)}{2}
\]

\[
\ln \left( \frac{h^*(z'_k)}{h^*(z_k)} \right)_{new} = H_{new}(z'_k, z_k) - \frac{\Delta_{new}(z'_k, z_k)}{2},
\]

where

\[
\Delta_{new}(z'_k, z_k) = b_{new}(z'_k) - b_{new}(z_k).
\]