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1 Introduction

We study existence and uniqueness of rational expectations equilibria in environments where

agents have nested information sets. Specifically, we consider an environment that contains

a fully informed agent and an agent with a limited information set that is nested within

the full information set. Throughout, we maintain the assumption that all agents form

expectations rationally and focus on linear equilibria in models with Gaussian innovations,

which implies that the agent with the limited information set employs the Kalman filter to

optimally conduct inference about variables that are outside his information set. In order

to provide some structure on our discussion we distinguish between cases where the signal

merely reflects a combination of exogenous variables, or where the signal is endogenous in

the sense that it also reflects the realization of endogenous variables.

The key finding in our paper is that equilibrium indeterminacy is substantially more

prevalent in this environment. Even when the equilibrium is unique in a corresponding

model where all agents have full information (or where all agents have partial, but symmet-

ric information, as shown in the appendix), the presence of less informed agents introduces,

via the Kalman filter, a feedback mechanism with stable dynamics such that the overall

system does not have the saddle-path uniqueness known from the full information case.

Conditions such as the Taylor Principle that guarantee equilibrium uniqueness in full infor-

mation models (and can be controlled by policymakers) have long served as a hallmark of

what constitutes ‘good’ policy. We show that in models with asymmetric information, this

connection can not be made and, instead, equilibrium uniqueness crucially depends on the

information set of the various agents in the model.

Equilibrium indeterminacy is generic in an environment where the limited information

set extends only to exogenous variables, as the use of the Kalman filter by the less informed

agents adds indeterminacy-inducing dynamics in this case. In the case where the limited

information set contains endogenous variables, the analysis becomes more difficult due to

the interplay of endogenous equilibrium dynamics and the projection problems of the less

informed, but we continue to find persuasive indeterminacy-inducing dynamics.

In particular, we consider an example where endogenous variables are observed with

error, and first construct a specific “benchmark” equilibrium that always exists. In this

benchmark equilibrium, agents coordinate on a rational expectations forecast error that

rules out sunspot shocks and imposes a unique parametric restriction on the effect of mea-

surement errors and the exogenous shocks of the economic model. Under this parametriza-
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tion, information on a subset of unobservable variables is fully revealed. We then show

that, depending on the parametrization of the information problem, additional equilibria

can exist.

Many models of imperfect information limit attention to cases where lagged state vari-

ables are always perfectly known such that informational asymmetries are limited to knowl-

edge about current shocks. In this case, equilibrium uniqueness would be maintained in

our introductory example, but this result does not generalize to other, more realistic mod-

els. We show that adopting this informational assumption in a typical, small-scale New

Keynesian model leads again to indeterminacy.

Our paper touches upon a wide swath of literature that is concerned with the properties

of rational expectations equilibria and deviations therefrom. The most immediate pre-

cursor to our work is Svensson and Woodford (2004) and a related paper by Aoki (2006).

They describe an optimal monetary policy problem in an information environment that is

similar to ours: a central bank observes only a subset of all available information, whereas

the private sector is fully informed. For a given set of first-order conditions to the optimal

policy problem under imperfect information, the approach of Svensson and Woodford falls

into the class of expectational linear-difference equations studied here. In contrast to our

paper, Svensson andWoodford only consider an equilibrium that corresponds to a minimum-

state variable solution, while explicitly assuming away issues of equilibrium indeterminacy.

Svensson and Woodford (2004) are not alone in pursing a MSV approach in such models,

other examples are given by Aoki (2008), or Nimark (2008). Specifically, they do not address

the full set of indeterminate equilibria that can arise in this framework. We show below

how our approach compares to Svensson and Woodford (2004) and how the latter maps

into our set of solutions.

The paper also draws inspiration from the literature on solving linear rational expec-

tations models, e.g., Sims (2002) whose formalism we employ. In addition, we use the

solution technique for indeterminate rational expectations models developed by Lubik and

Schorfheide (2003) which focuses on the properties of the rational expectations forecast

error. In order to characterize the equilibrium decomposition of this error into fundamental

and non-fundamental components we find it convenient to make use of the recent reinterpre-

tation of this earlier paper by Farmer et al. (2015). We show how in an environment with

limited information the loadings on the various stochastic components of the endogenous

forecast error are related to the endogenous Kalman gain and which further restrictions

are therefore imposed on equilibrium selection. In addition, our paper shows that results
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obtained in the global games literature (Morris and Shin, 1998), where the introduction of

asymmetric information leads to equilibrium uniqueness, do not carry over to all environ-

ments that are of interest to macroeconomists.

Our work falls into the general category of recent work that studies the implications of

imperfect information on rational expectations equilibria including, for example, Nimark

(2011), Mertens (2016), Rondina and Walker (2016), and Lubik and Matthes (2016).

This paper is structured as follows. In the next section, we provide a simple example

that details our solution approach and that highlights analytically our findings. We also

show how our approach connects with and refines some earlier contributions to the literature.

Section 3 discusses the general solution approach, while we apply our framework to a typical

model used in the analysis of monetary policy in Section 4. Section 5 concludes with

discussing our findings in the light of empirical applicability.

2 A Simple Analytical Example

We begin by developing a simple example for which analytical solutions are available. Our

example relies on a bare-bones model of inflation determination and monetary policy, known

from Woodford (2003), that is rich enough to develop intuition for the general case. In the

first step, we describe equilibrium determination under full information rational expec-

tations which we use as a benchmark to evaluate limited information equilibria against.

Within this simple model, we then introduce our framework where agents have different

information sets, specifically, where one agent is fully informed and the other agents only

observes a subset of the full information set. Finally, we discuss how our framework relates

to the set-up and the findings in Svensson and Woodford (2004). In the appendix we show

that our results depend on the existence of asymmetric information.

2.1 Determinacy and Indeterminacy under Rational Expectations

We consider a simple model of inflation determination in the vein of the cashless economy

without nominal frictions as in Woodford (2003). The model economy consists of a Fisher

equation which links the nominal interest rate it to the real rate rt via expected inflation

Etπt+1 and a monetary policy rule that has the nominal rate respond to current inflation

πt, that is, a Taylor-rule.1 Furthermore, the real rate of interest is characterized by an

1We also considered the case of a Wicksellian policy rule: it = rt + ϕπt, with a time-varying intercept
given by the real rate of interest. The steps towards deriving a solution are very much identical to the ones
described in the main text. The derivations are available from the authors upon request.
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exogenous AR(1) process driven by a Gaussian shock. εt ∼ iid N (0, σ2
ε).

The equation system is thus given by:

it = rt + Etπt+1, (1)

it = ϕπt, (2)

rt = ρrt−1 + εt. (3)

The first equation is the Fisher equation, the second is the policy rule, while the third

equation describes the evolution of the real rate as an AR(1) process. All variables can

be understood as deviations from their respective steady state values. ϕ is a monetary

policy parameter. The autoregressive parameter |ρ| < 1 to guarantee stationarity. Et is

the rational expectations operator under full information. It denotes the mathematical

expectation conditional on the full information set St of all shocks through time t, so that

for some variable xt, Etxt+h = E
(
xt+h|St

)
and Etxt = xt.

We can also distinguish two agents in this economy: First, a representative private-sector

agent whose behavior is characterized by the Fisher equation (1), and second, a central bank

whose behavior is given by the monetary policy rule (2). Under full information rational

expectations (FIRE), both agents are assumed to know St. This means that they observe

all variables in the model without error, that they know the history of all shocks, that they

understand the structure of the economy and the solution concepts. We will modify this

assumption minimally in the next section.

In order to find a rational expectations equilibrium (REE), we can substitute the policy

rule into the Fisher equation to derive a relationship in inflation with driving process rt:

Etπt+1 = ϕπt + rt. (4)

The dynamic behavior of inflation depends on the value of the policy coefficient ϕ. Applying

covariance stationarity as an equilibrium selection criterion, then it is well known that a

unique equilibrium exists if and only |ϕ| > 1.2 It is straightforward to establish that

the unique REE solution is πt = 1
ϕ−ρrt and it = ϕ

ϕ−ρrt. This is the case of equilibrium

determinacy.

While the remainder of this paper will focus attention on the case where ϕ is inside the

unit circle, it is instructive to review the well-studied full-information case of equilibrium

2There has been some recent interest in equilibria that use different selection criteria, accompanied by the
development of analytical tools to deal with these cases. A precursor of this literature is the regime-switching
model of Davig and Leeper (2007) and the rejoinder by Farmer, Waggoner, and Zha (2009). More recently,
Cochrane (2016) looks at equilibria along explosive paths.
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indeterminacy that arises when ϕ is inside the unit circle. In this scenario, the equilibrium

can be indeterminate in the sense that there are possibly infinitely many solutions that

are consistent with equation (4). In order to analyze this case we find it convenient to

follow Lubik and Schorfheide (2003) and introduce the rational expectations forecast error

ηt = πt − Et−1πt, whereby Et−1ηt = 0 by construction. We can use this definition to

substitute out the expectations term in (4). This results in the expression:

πt = ϕπt−1 + rt−1 + ηt. (5)

It is easily verifiable that this is a solution to the expectational difference equation (4). In

this equilibrium, inflation is a stationary process with autoregressive parameter |ϕ| < 1 and

driving process rt−1.

What makes this equilibrium indeterminate is the fact that the solution imposes no

restriction on the evolution of ηt other than it is a martingale difference sequence with

Et−1ηt = 0. Consequently, there can be infinitely many solutions. We can, however, provide

some structure, at least in terms of economic intuition, if we are willing to link the process

ηt to the shock processes of the economy. To this effect, we find it convenient to follow

Lubik and Schorfheide (2003) and rewrite the inflation equation in terms of expectations

only. We define ξt = Etπt+1 and rewrite equation (4) as ξt = ϕξt−1 + rt + ϕηt.

In this specification, the forecast error ηt emerges as an innovation to the conditional

expectation ξt. Taking an additional step, we can further decompose, without loss of gen-

erality, ηt into a fundamental component, namely the policy innovation εt and a non-

fundamental component, the belief shock bt; more specifically, ηt = γεεt + γbbt.
3 The

coefficients γε and γb can be used to index specific equilibria with the set of indeterminate

equilibria. In the case of FIRE the choice of these parameters is arbitrary.

Next, we will turn to limited-information settings with rational expectations (LIRE).

As in the case of FIRE, we will continue to decompose endogenous forecast errors (η) into

fundamental and non-fundamental components (εt and bt, respectively). In the case of

LIRE, equilibrium indeterminacy arises even when |ϕ| > 1, but the set of equilibria will be

restricted in the form of additional restrictions on the analogues of γε and γb introduced

above.

3To be more specific, this is without loss of generality within the set of equilibria that are time-invariant
and linear. There are other, non-linear equilibria that can be constructed for this linear model.
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2.2 Equilibrium Determinacy under Limited Information

We now introduce the idea that the central bank possesses only limited information. The

structure of the model, specifically the form of the equations, remains the same, but we alter

the conditioning of the expectations operator with respect to different information sets. We

assume that the limited information set of the central bank, denoted Zt is nested in St,

the information set of the private sector. That is, the central bank knows less than the

private sector, but it still forms expectations rationally.4 The central bank’s projections of

any variable xt are denoted xt|t = E
(
xt|Zt

)
and xt+h|t = E

(
xt+h|Zt

)
. Since Zt is spanned

by St we can apply the law of iterated expectations to obtain: E
(
E(xt+h|Zt)|St

)
= xt+h|t.

We assume that the central bank can set the nominal interest rate only as a function of

Zt. This idea can be captured by imposing the following monetary policy rule:

it = ϕπt|t (6)

We can now apply the same conditioning to the other two equations in the system to derive

a solution for the central bank’s projection for the model’s variables. Going through the

same steps as above, we can condition down the variables in the system (1) - (3) and derive

the projection for inflation. We continue to assume that |ϕ| > 1, in which case we have

πt|t =
1

ϕ−ρrt|t and it =
ϕ

ϕ−ρrt|t. This solution in terms of the central bank’s projections for

the model variables hold under any definition of the central bank’s information set as long as

Zt is spanned by St. Under the assumption that policy follows the Taylor principle, |ϕ| > 1,

the central bank projections of the real rate and inflation share the same relationship as the

actual variables in the full information model, even though the central bank is aware of the

possibility of indeterminacy.

We combine the private sector Fisher equation (1) with the projected policy rule (6):

ϕπt|t = rt + Etπt+1. (7)

πt|t is an endogenous variable, the central bank’s projection of inflation, that has to be

linked to private sector variables to derive a solution, while Etπt+1 is the private sector’s

expectation. Using the formalism described in the previous section, we can rewrite this

expression as:

πt = ϕπt−1|t−1 − rt−1 + ηt =
ϕ

ϕ− ρ
rt−1|t−1 − rt−1 + ηt,

4This is a key difference to the framework in Lubik and Matthes (2016) who assume in addition that the
central bank engages in least-squares learning to gain information about private-sector outcomes. In our
setup, the deviation from the standard rational expectations benchmark is only minor in the sense that the
central bank does not observe everything that the private sector does, but is otherwise fully informed.
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where rt−1|t−1 is an endogenous variable on account of the central bank’s projection prob-

lem. Finding an REE therefore requires linking projections such as rt−1|t−1 to the state

variables of the model. Moreover, we need to solve out the endogenous forecast error ηt

of the private sector, the solution to which can be unique or indeterminate. The next

step therefore requires to specify the information set of the central bank. For purposes

of exposition we distinguish between exogenous and endogenous information sets: While

exogenous information sets solely reflect the realisation of exogenous variables, endogenous

information sets also include (possibly noisy) signals of endogenous variables.5

2.2.1 Equilibria with an Exogenous Information Set

Suppose that the central bank observes the real interest rate with measurement error νt,

where νt ∼ iid N (0, σ2
ν). Therefore, the central bank’s information set is such that Zt =

rt+ νt. It is exogenous in that the real rate is an exogenous process which does not depend

on other endogenous variables. The central bank uses the Kalman filter, the optimal linear

filter in this environment, to make projections. Specifically, the projection equation is:

rt|t = rt|t−1 + κr
(
rt − rt|t−1 + νt

)
. (8)

The central bank updates its current projection rt|t relative to its previous one-step ahead

projection rt|t−1 using the current information rt+νt. The crucial parameter in this updating

equation is the (optimal) Kalman gain κr which we have to compute separately.

In the specific case of an exogenous information set, the Kalman filtering problem can,

however, be solved independently from the rest of model — since both state and measure-

ment equation comprise only exogenous variables — which greatly facilitates the analysis.

We first note that rt|t−1 = ρrt−1|t−1 so that we can derive the full equation system

which describes the joint evolution of actual inflation πt, the exogenous real rate rt, and

the central bank projection of the real rate rt|t. The system is given by:

πt =
ϕ

ϕ− ρ
rt−1|t−1 − rt−1 + ηt,

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (9)

rt = ρrt−1 + εt.

This is a well-specified equation system in three unknowns and can be solved using standard

methods for linear rational expectations models that allow for indeterminacy (Lubik and

5In our framework, information sets are defined as linear combinations of variables. For the purpose of
our paper, the term “endogenous information” refers to cases where these linear combinations also comprise
endogenous variables, which is not to be confused with other settings where the make up of the linear
combination itself might be the outcome of an endogenous choice.
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Schorfheide, 2003). Specifically, a solution would pin down the endogenous forecast error

ηt, which would then determine whether the REE under limited information is determinate

or indeterminate. We also note that the equation system is recursive and that the overall

dynamic properties depend on the yet unknown value of (1− κr) ρ; in order to determine

the size of this ‘root’ we need to compute the gain κr first.

We find it convenient to define innovations of any variable xt as its unexpected compo-

nent relative to the limited information set Zt: x̃t = xt − xt|t−1. The Kalman gain is given

by:

κr =
cov

(
r̃t, Z̃t

)
var(Z̃t)

, (10)

where the tildes denote the projection innovations, e.g. r̃t = rt − rt|t−1 and Z̃t = r̃t + νt.

Given the definition of Σ = var
(
r̃t − r̃t|t

)
= var (r̃t) − var

(
r̃t|t

)
(whereby cov(r̃t, r̃t|t) =

var(r̃t|t)), we can find that var (r̃t) = ρ2Σ+ σ2
ε and that var(Z̃t) = var (r̃t)+σ2

ν . Similarly,

cov(r̃t, Z̃t) = var (r̃t) and we find the following expression for the Kalman gain:

κr =
ρ2Σ+ σ2

ε

ρ2Σ+ σ2
ε + σ2

ν

, (11)

which for positive Σ lies within the unit circle.

The variance Σ can be computed from the definition above, whereby var
(
r̃t|t

)
=

κrcov
(
r̃t, Z̃t

)
and where we have utilized the expression for the projection equation r̃t|t =

κrZ̃t. Substituting these expressions into the definition of Σ results in a non-linear Riccati

equation:

Σ =
ρ2Σ+ σ2

ε

ρ2Σ+ σ2
ε + σ2

ν

σ2
ν . (12)

The solution to this (quadratic) equation is given by:

Σ =
1

2ρ2

[
−
(
σ2
ε +

(
1− ρ2

)
σ2
ν

)
+

√
(σ2

ε + (1− ρ2)σ2
ν)

2 + 4σ2
εσ

2
νρ

2

]
. (13)

Since 0 < κr < 1, it follows that 0 < (1− κr) ρ < 1 and the law of motion for rt|t in the full

equation system is a stable difference equation that delivers a stationary solution. Since

the equation for actual inflation does not depend on its own lags, we can conclude that the

equilibrium is indeterminate.

As will be discussed next, the equilibrium condition πt|t =
1

ϕ−ρrt|t imposes restrictions

on ηt, without uniquely pinning it down, however. Following Farmer et al. (2015) we

can decompose the forecast error ηt = γεεt + γbbt + γννt, where the weights on the in-

novations are generally undetermined. Specific values index specific equilibria among the
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set of indeterminate equilibria as discussed in Lubik and Schorfheide (2003). The equi-

librium condition πt|t = 1
ϕ−ρrt|t has to hold along every equilibrium path imposes the

following restriction on innovations with respect to the central bank’s information set:

cov
(
π̃t, Z̃t

)
= 1

ϕ−ρcov
(
r̃t, Z̃t

)
. This “subspace-condition” restricts the set of multiple

equilibria because it restricts the γ coefficients that determine ηt. This condition is absent

from full information models with indeterminacy, and thus differentiates the class of LIRE

models from their FIRE counterparts.

We know that cov
(
r̃t, Z̃t

)
= ρ2Σ + σ2

ε . cov
(
π̃t, Z̃t

)
= cov (π̃t, r̃t) + cov (π̃t, νt). Using

the innovation representation of the projection equation for πt we have

π̃t = −
(
r̃t−1 − r̃t−1|t−1

)
+ ηt. (14)

After some substitution we find that cov (π̃t, r̃t) = −ρΣ + γεσ
2
ε . Similarly, we can find

cov (π̃t, νt) = γνσ
2
ν . Combining all expressions then results in the following linear restriction

on the weights in the forecast error: ηt = γεεt + γbbt + γννt:

γν =
ϕ

ϕ− ρ

Σ

σ2
ν

+
1

ϕ− ρ

σ2
ε

σ2
ν

− σ2
ε

σ2
ν

γε. (15)

The solution to the simple model under LIRE with an exogenous information set can

therefore be written as:

πt =
ϕ

ϕ− ρ
rt−1|t−1 − rt−1 + γεεt + γbbt + γννt,

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (16)

rt = ρrt−1 + εt.

where:

κr =
ρ2Σ+ σ2

ε

ρ2Σ+ σ2
ε + σ2

ν

,

Σ =
1

2ρ2

[
−
(
σ2
ε +

(
1− ρ2

)
σ2
ν

)
+

√
(σ2

ε + (1− ρ2)σ2
ν)

2 + 4σ2
εσ

2
νρ

2

]
,

−∞ < γb < ∞,−∞ < γε < ∞, γν =
ϕ

ϕ− ρ

Σ

σ2
ν

+
1

ϕ− ρ

σ2
ε

σ2
ν

− σ2
ε

σ2
ν

γε

We can summarize our findings as follows: First, the limited information rational ex-

pectations equilibrium is indeterminate even though the full information counterpart has

a determinate equilibrium. The optimal filtering procedure employed by the central bank

introduces a stable root into the system and thus leaves the endogenous forecast error unde-

termined. While there is a uniquely determined mapping from the central bank’s projections
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of state variables to endogenous outcomes, actual equilibrium outcomes - in particular the

component that is orthogonal to the central bank’s information set - remains indeterminate.

Second, a consistency requirement for Kalman filtering imposes restrictions on the set of

multiple equilibria. However, at least in the exogenous-information case, these restrictions

do not affect the way belief shocks bt (”sunspot shocks”) may enter the system. In full

information solutions under indeterminacy the set of multiple equilibria is typically unre-

stricted. Optimal filtering in a limited information counterpart restricts how the private

agents coordinate on an equilibrium. From an empirical perspective, the FIRE solution

results in a reduced-form representation for inflation that is first-order autoregressive. The

LIRE solution on the other hand exhibits much richer dynamics. In particular, the resulting

inflation process can be quite persistent when the signal-to-noise ratio is small as a large σ2
ν

translates into a small Kalman gain.

It is also worth pointing out that the equilibria we study in this paper (independent

of the exact information structure) can in general not be written as a moving average of

the forecast errors coming out of the Kalman filter (which is possible in an environment of

partial, but symmetric information).

This simple example may be regarded as restrictive as the central bank only observes an

exogenous process with error, whereas in practice observed variables are typically endoge-

nous (and measured with error). In the next step, we therefore study the implications of the

central bank observing the inflation rate with error. The information set is endogenous in

the sense that the variable contained therein is determined in equilibrium. This potentially

creates additional feedback within the model.

2.2.2 An Endogenous Information Set

We now assume that the central bank observes the inflation rate with measurement error

νt such that Zt = πt + νt. The solution in the terms of the central bank projections

is identical to the previous case. What changes is however the interdependence between

the filtering problem and the equilibrium dynamics. We find it convenient to express the

analysis in terms of the projection equation for the real rate to maintain comparability with

the previous case. The projection equation is:

rt|t = rt|t−1 + κr
(
πt − πt|t−1 + νt

)
. (17)
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From this we can derive the full equation system as before, namely:

πt =
ϕ

ϕ− ρ
rt−1|t−1 − rt−1 + ηt (18)

rt|t = (ρ+ κr) rt−1|t−1 + κrrt−1 + κrνt + κrηt (19)

rt = ρrt−1 + εt (20)

This system looks superficially similar to the previous one with exogenous information.

What is different is that the coefficient on the lagged real rate projection (ρ+ κr) rt−1|t−1

depends now on the endogenous dynamics of πt, which may or may not lead to an unstable

root |ρ+ κr| > 1 and, if not, give rise to non-fundamental belief shocks affecting equilibrium

dynamics without causing non-stationary variations. The Kalman gain itself may no longer

be unique in this setting, a stark contrast from the case of exogenous information.

2.2.3 A Benchmark Solution with Endogenous Information

The observation that the projection equation rt|t = (ρ+ κr) rt−1|t−1 + κrrt−1 + κrνt + κrηt

can be potentially explosive and would therefore pin down the forecast error ηt can be

used to find an equilibrium. Using the definition r∗t = rt − rt|t, which is the error from

the projection onto the current information set, we can rewrite the projection equation as

follows:

r∗t = (ρ+ κr) r
∗
t−1 + εt − κrνt − κrηt. (21)

This is a first-order difference equation driven by a linear combination of shocks: the exoge-

nous real-rate shock εt, the exogenous measurement error νt, and the endogenous forecast

error ηt. Now suppose that |ρ+ κr| > 1. The solution to this explosive equation is r∗t ≡ 0

and ηt =
1
κr
εt− νt. This solution uniquely pins down the forecast error and therefore seems

to render the equilibrium determinate. Why is this equilibrium not necessarily unique? The

Kalman gain κr is endogenous and as such, there can in general be other equilibria with

a different Kalman gain. We explore this possibility in the next section The benchmark

equilibrium is a full revelation solution in that it implies that rt|t = rt, that is, the real rate

projection using current information is exact (the equilibrium inflation rate, however, is not

revealed without error to the central bank).

Existence of this solution requires that we can find a κr such that |ρ+ κr| > 1 and that

the subspace condition holds. We can verify that this is in fact the case by substituting

the solution into the projection equation which results in rt = ρrt−1 + εt, that is, the

exogenous process for the real rate. Substituting the solution in the inflation equation

yields πt =
ρ

ϕ−ρrt−1 +
1
κr
εt − νt, which depends on the Kalman gain. Since this solution

12



achieves full revelation for the real rate, we can hypothesize that it is consistent with the full

information solution that we derived above in the following sense: πFI
t = ρ

ϕ−ρrt−1 +
1

ϕ−ρεt,

which is void of the measurement error. Comparing the LIRE and FIRE solution we find

that πLI
t = πFI

t −νt, which implies κr = ϕ−ρ. The subspace condition additionally imposes

κπ = κr/ (ϕ− ρ) = 1 and always holds.

The nature of this equilibrium is such that in terms of the forecast error decomposition

ηt = γεεt + γbbt + γννt we have γε = 1/ (ϕ− ρ), γν = −1, and γb = 0. The latter follows

since under determinacy sunspot shocks do not affect equilibrium outcomes. As a final step,

we need to verify that this Kalman gain is consistent with the Riccati equation. Under this

parametrization, the Riccati equation has a positive solution and a solution with Σ = 0,

which implies full revelation of the real rate. This root intersects with the subspace condition

at the value γε = 1/ (ϕ− ρ).6 Finally, the root of the projection equation ρ + κr = ϕ > 1,

which validates our original assumption.

2.2.4 Other Equilibria under Endogenous Information

We next turn to finding other equilibria in the model with the endogenous information set

described above. As a first step, we again derive the optimal Kalman gain. After some

lengthy algebra, we find that:

κr =
cov

(
r̃t, Z̃t

)
var(Z̃t)

=
−ρΣ+ γεσ

2
ε

Σ+ γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)

2 σ2
ν

. (22)

The projection error variance Σ can be computed from the Riccati equation

Σ = var
(
r̃t − r̃t|t

)
= var (r̃t)− var

(
r̃t|t

)
= ρ2Σ+ σ2

ε −
−
(
ρΣ+ γεσ

2
ε

)2
Σ+ γ2εσ

2
ε + γ2bσ

2
b + (1 + γν)

2 σ2
ν

.

Existence of an equilibrium also requires that the subspace condition

cov
(
r̃t, Z̃t

)
= (ϕ− ρ) cov

(
π̃t, Z̃t

)
holds, which imposes the restriction that

ϕΣ = (1− (ϕ− ρ) γε) γ
2
εσ

2
ε − (ϕ− ρ) γν (1 + γν)σ

2
ν − γ2bσ

2
b .

The solution to the full equation system therefore rests on whether the root |ρ+ κr| ≷ 1.

If the root is greater than one, we recover the benchmark equilibrium described above. Using

6In reference to Figure 1 this means that the negative root touches zero where it intersects with the
hyperbola of the subspace condition.
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numerical simulation we found it generally difficult to find solutions for which the root is less

than one if we imposed a small variance of the measurement error. While we can compute

solutions to the projection error variance Σ from the Riccati equation in these cases, these

generally turn out to be inconsistent with the sub-space condition. Figure 1 highlights the

issue. For a typical parametrization and γb = 0 it shows the two roots of the quadratic

Riccati equation and the hyperbola of the subspace condition. These values are plotted as

functions of the loading on the real rate innovation γε over the range [−10, 10]. We also

report the Kalman gain for reference purposes.

Existence of a solution requires that the positive root of the Riccati equation and the

subspace condition hold at the same time, but they never intersect or even touch. For

this given parametrization no equilibrium exists since under these parameters the Kalman

filter does not exist in the sense that the projection equations for the variables outside of

the central bank’s information set are explosive and mutually inconsistent. A wide-ranging

exploration of the parameter space does reveal, however, that an equilibrium exists for small

ρ, high ϕ, and large σ2
ν . In this case, the equilibrium would be indeterminate as in the case

with an exogenous information set since the Kalman gain is small and negative as already

indicated in Figure 1. Moreover, if the equilibrium exists, there is one non-linear restriction

on three weights in the forecast error.

If we increase the variance of the measurement error, we can find multiple equilibria. In

figure 2, we plot various equilibria (varying the weight on the belief shock bt and then solving

for the other loadings) for the case where the measurement error variance is (unrealistically)

large.7 We show later that with richer models, equilibrium indeterminacy is more prevalent

even for substantially smaller values of the measurement error variance.

To summarize, in the LIRE model with an endogenous information set it is possible to

find an equilibrium that (almost) replicates the FIRE equilibrium. There is higher infla-

tion volatility on account of the presence of the measurement error. Nevertheless there are

potentially other equilibria that lead to indeterminacy but based on numerical solutions

we regard them as implausible for this specific model. Other models, because of different

equilibrium conditions (and as such subspace conditions) have multiple equilibria with en-

dogenous information sets for reasonable parameters. The scenario described in this section

is akin to the outcome described in Lubik and Schorfheide (2003), where an indeterminate

equilibrium without sunspots is observationally equivalent to a corresponding determinate

equilibrium.

7The dashed black line is the full information response, whereas the red lines are the responses under
some of the multiple equilibria.
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2.3 MSV Solution: Svensson and Woodford (2004)

In a precursor paper to ours, Svensson and Woodford (2004) study a similar environment,

but they solve their model using a minimum-state-variable (MSV) approach. This means

that by construction they rule out sunspot shocks. Moreover, the resulting solution re-

sembles a corresponding determinate equilibrium, as discussed in Lubik and Schorfheide

(2003), since it abstracts from the additional state introduced by the now-stable root under

indeterminacy. We now translate their solution into our framework and show that by im-

posing MSV-solutions they miss out on the generic nature of indeterminate equilibria under

imperfect information.

In terms of the modelling, an important difference between their work and ours is

that, in the present model is described by a given rule, whereas Svensson and Woodford

endeavour to characterize optimal policy. However, for a given set of first-order conditions

to the optimal policy problem under imperfect information, their approach falls into the

class of expectational linear-difference equations studied here as well (see Section 3 for a

more general discussion). Svensson and Woodford (2004) are not alone in pursing a MSV

approach in such models, other examples are given by Aoki (2008), or Nimark (2008);

applied to our model, this approach begins with a guess that the equilibrium process for

inflation has the following form:

πt = g r∗t + ḡ rt|t ḡ ≡ 1

ϕ− ρ
(23)

= g rt + (ḡ − g) rt|t

For any choice of g, this guess automatically satisfies the sub-space condition πt|t = ḡrt|t.

What remains to be seen is which values for g (if any) would be consistent with the rest

of the dynamic system, notably the innovations version of Fisher equation in (14). Notice

that the proposed solution excludes belief shocks.

Let us proceed by deriving the dynamics for r∗t and rt|t implied by (23) for a given value

of g. A slight complication for setting up the Kalman filter — encountered also by Svensson

and Woodford — is that the guess for inflation in (23) depends on the projected real rate,

and thus on the history of measurements (Zt) which in turn depends on the history of

inflation:

Zt = g rt + (ḡ − g) rt|t + νt (24)

However, notice that the term in rt|t does not add any new information to Zt. Instead
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it provides an implicit definition of an information set spanned by:

Wt = g rt + νt (25)

in the sense that E(xt|Zt) = E(xt|W t) for any variable xt. While projections of variables

onto W t and Zt are equivalent, the associated Kalman gains will, however, differ by a factor

of proportionality.8

For starters, consider the Kalman gain involved in projecting the real rate onto W t,

r̃t|t = κW̃t:

R2 ≡ g ·K ⇒ 0 ≤ R2 ≤ 1.

We can then write

π̃t = g · r̃t + (ḡ − g)κ W̃t

=
(
g · (1−R2) + ḡ ·R2

)
r̃t + (ḡ − g)κ νt

=
(
g · (1−R2) + ḡ ·R2

)
ρ r∗t−1 +

(
g · (1−R2) + ḡ ·R2

)
εt + (ḡ − g)κ νt︸ ︷︷ ︸

=ηt

(26)

where the last line uses r̃t = ρ r∗t−1 + εt.

In order to match (14) we can set ηt equal to the shock components of (26) as indicated

above and we need to find a value for g that sets the loading on r∗t−1 in (26) equal to minus

one: (
g · (1−R2) + ḡ ·R2

)
ρ = −1 (27)

⇒ g ≤ 0 (28)

where the inequality follows from ḡ, R2 and ρ being all positive numbers. As a further

condition, the solution approach espoused by Svensson and Woodford (2004) would require

the roots of the characteristic equation describing the joint dynamics of πt, rt|t and rt,

see (18)- (20) above, to satisfy the usual counting rule for values inside and outside the unit

circle. In the present case, with only one backward-looking variables, rt, and two forward-

looking variables, πt and rt|t, the approach of Svensson and Woodford (2004) would rely

on finding one stable and two unstable eigenvalues. However, it can be shown that in the

present example, the Kalman filter will always stabilize the dynamics of rt−rt|t causing the

system to have two stable and only one unstable root.

8Let Kr continue to denote the Kalman gain of rt onto Zt and we have

Z̃t = W̃t + (ḡ − g) ·Kr · Z̃t = W̃t/(1− (ḡ − g) ·Kr).
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Note that the set of MSV candidate solutions — described by (23) for any given value

of g — does not span the set of all candidate solutions that we have looked at so far —

described by any combination of weights γ for the linear combination of shocks that make

up the endogenous forecast error ηt: Furthermore, the set of SW candidates does not even

span the restricted set of candidates for ηt where γb = 0. To see this, notice that the MSV

candidate is parametrized by a single unknown coefficient, g, which places a restriction on

the weights γε and γν implied by the associated specification of ηt as seen in (26).

17



3 General Framework

Consider the following system of expectational linear-difference equations:I 0 0
0 I 0
0 0 0

Et

Xt+1

Yt+1

Ut+1

+ J

Xt+1|t
Yt+1|t
Ut+1|t

 =

Axx Axy 0
Ayx Ayy 0
0 0 0

Xt

Yt
Ut

+ Â

Xt|t
Yt|t
Ut|t

 (29)

with

Ut ≡ Ut|t (30)

Xt − Et−1Xt = Qεt Var (εt) = I (31)

where Xt is a vector of backward-looking variables, characterized by exogenous forecast

errors εt ∼ N(0, QQ′), Yt is a vector of forward-looking variables, Ut is a vector of forward-

looking variables that is restricted to lie in a space spanned by a restricted information set

that will be discussed shortly.9 J is a square matrix and may be singular. Expectations

Et(·) are conditional on perfect information about the history of all shocks and variables in

the system.10 Formally, for any variable vt:

Et vt ≡ E(vt|St) St = {St, St−1, St−2, . . .} St ≡
[
Xt

Yt

]
(32)

In contrast, vt|t denotes a conditional expectation derived from a limited information

set:

vt|t ≡ E(vt|Zt) Zt = {Zt, Zt−1, Zt−2, . . .} Zt = LSt (33)

where L has not full column rank.11

Notice that Ut = Ut|t is not included in St; by definition, Ut merely reflects information

contained in St and thus does not add any new information.

The linear difference system in (31) does not only arise in models where policy is charac-

terized by Taylor rule under limited information but also extends to the system of first-order

conditions for optimal policy under asymmetric information derived by Svensson and Wood-

ford (2004) and Aoki (2006). Notice further that (31) is quite different from the often-cited

9In our monetary-policy applications, Ut will be the vector of policymakers’ control variables — typically
just the nominal short-term rate. Separating out Ut from Xt and Yt simply serves to avoid singularities once
the system is written in terms of variables that are orthogonal to the policymaker’s information set.

10Note: Q may have more rows than columns and QQ′ may be only positive semi-definite (i.e. not
necessarily positive definite), as Xt may also track lagged variables.

11Notice, this allows also the case of noisy observations Zt = CSt + νt after appropriate redefinition of Xt

(and thus St) to include also νt.
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work by Pearlman, Currie and Levine (1986) who study linear, expectational difference

systems where all expectation operators are conditioned on limited information.12

Apart from the term involving Xt|t and Yt|t, the system in (31) corresponds to the frame-

work(s) known from Blanchard and Kahn (1980), King and Watson (1998), Klein (2000)

and Sims (2002). Most of these studies even allow for “singular” systems, where some

equations are purely static, without involving any forward-looking terms. For our purpose

it will, however, be convenient to assume a non-singular system as in (31).

3.1 Unique Solution for Central-Bank Projections

Throughout, it is assumed that the public information set includes also the central bank’s

information set — formally: Zt lies in the span of St — which turns out to be highly useful

for the next step: Consider conditioning down (31) onto the central bank’s information set

(Zt). The resulting system can easily be “solved” in terms of a relationship between Yt|t

and Xt|t with any of the above-mentioned solution methods for linear rational expectation

systems. The resulting system is isomorphic to the full information analogue of (31):

J

Xt+1|t
Yt+1|t
Ut+1|t

 = A

Xt|t
Yt|t
Ut|t

 A =

Axx Axy 0
Ayx Ayy 0
0 0 0

+ Â J =

I 0 0
0 I 0
0 0 0

+ J (34)

This part of the solution is identical to the analysis of Aoki (2006), Svensson and Wood-

ford (2004).

Notice that the presence of central-bank expectations Yt+1|t and Xt+1|t in (31) does not

materially alter the problem since (34) is neatly handled by the methods of, for example,

Klein (2000) and Sims (2002), independently of whether J (or J ) is singular or not.13

Provided the conditions for a unique rational expectations under full information are met

— which are henceforth assumed to hold — we obtain the following relationship between

the central bank’s projections of forward- and backward-looking variables:14

Ut|t = FXt|t Yt|t = GXt|t Xt+1|t = PXt|t ⇒ St+1|t =

[
P 0

G P 0

]
︸ ︷︷ ︸

≡P

St|t (35)

12The framework of Pearlman, Currie and Levine (1986) would thus capture a version of (31) where Xt+1|t
and Yt+1|t were to replace EtXt+1 and EtYt+1, respectively.

13In anticipation of the Kalman filtering equations introduced further below, we are however assuming
that the loadings on EtYt+1 and EtXt+1 in (31) are non-singular such that the system can be written in the
form shown in (31) where these expectations are pre-multiplied by the identity matrix.

14A unique RE equilibrium — in terms of mapping projected states Xt|t into projected outcomes Yt|t and
Ut|t — for (34) exists when the number of eigenvalues of A that lie outside the unit circle is identical to the
number of forward-looking variables Yt and Ut.
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where P (and thus also P) is stable. For any sequence of innovations to Xt|t under the

central banks’ information set Zt, denoted

X̃t|t ≡ Xt|t −Xt|t−1,

there is is thus a unique, stable solution for the central bank’s projections stacked in St|t.
15

In general, the following notation will be useful: For any variable vt, define “innovations”

ṽt and “residuals” v∗t as

ṽt ≡ vt − vt|t−1, v∗t ≡ vt − vt|t = ṽt − ṽt|t. (36)

and notice that by construction we always have ṽt|t−1 = 0.

As all shocks are normally distributed, and assuming a linear, time-invariant equilib-

rium exists (as will be verified below), we can conjecture that optimal projections will be

characterized by a Kalman filter. The Kalman filter (if it exists) then implies

St|t = St|t−1 +KZ̃t (37)

= P St−1|t−1 +K L S̃t︸ ︷︷ ︸
=S̃t|t

(38)

where K is the Kalman gain, and the second equation follows from (35) and the definition

of Zt. So far, we have found a unique stable solution for the evolution of the central bank’s

projections, for a given sequence of innovations X̃t|t = K C S̃t. What remains to be shown

is how S̃t is pinned down in equilibrium and whether the solution for S̃t is unique.

3.2 Sub-Space Condition

The endogenous innovations process S̃t remains to be derived, and it will have to be seen

whether this process is uniquely determined. Importantly, the solution to the system in (34),

given in (35), imposes the following restriction on projections of the state innovations onto

the information set:[
G −I

]︸ ︷︷ ︸
≡G

St|t = 0 ⇒ GS̃t|t = 0 ⇒ GK L = 0 (39)

(Notice that (35) implies GP = 0 and thus also GSt|t−1 = 0.) More succinctly, the solution

to (34) implies the following orthogonality condition:

E(Ỹt −GX̃t)Z̃
′
t = 0 (40)

15X̃t|t is a martingale difference sequence with respect to Zt but not St: By construction we have X̃t|t−1 =

0 but typically not Et−1X̃t|t = 0.
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3.3 The “Residual System”

From now on, let’s work with an expectational difference system expressed in terms of

“innovations” S̃t and “projection residuals” S∗
t = S̃t− S̃t|t = St−St|t. Having solved for the

innovations process S̃t we can express the solution to the entire system via (35) and (38).

Specifically, we can take expectations of all terms in (34) conditional on Zt and subtract

these on both sides of the equation to obtain16

Et(St+1 − St+1|t) = A (St − St|t) ⇒ EtS̃t+1 = A S∗
t . (41)

where A ≡
[
Axx Axy

Ayx Ayy

]
(42)

Clearly, this is not quite a standard difference equation, as the left-hand side involves S̃t+1

and not S∗
t+1 while the left-hand side involves S∗

t (and not S̃t).

Define endogenous forecast errors ηt and recall the definition of the exogenous forecast

errors εt that affect the backward-looking variables:17

ηt ≡ (1− Et−1)Yt Qεt ≡ (1− Et−1)Xt. (43)

As argued above, the endogenous forecast errors ηt can be written as the sum of a

component due to fundamental shocks and a component due to non-fundamental shocks:

ηt = Sεt +Rbt where E(εt b
′
t) = 0 bt ∼ N(0, I) (44)

The residual system (41) can then be written as the state equation of a Kalman filtering

system in innovations form:

S̃t+1 = A (S̃t − S̃t|t) +B wt+1 (45)

Z̃t = L S̃t. (46)

wt+1 ≡
[
εt+1

bt+1

]
Var (wt) = I (47)

We are interested in restrictions on the forecast errors ηt that ensure a bounded solution

to (45) and (46). Strikingly, the Kalman filter, if it exists, ensures bounded innovations

S̃t+1 (and thus also bounded residuals S∗
t = S̃t − S̃t|t). Furthermore, for the system above,

a time-invariant Kalman filter exists under two, fairly mild conditions; see, for example,

Anderson and Moore (1979).

16Note that EtSt+1|t = St+1|t as Zt is in the span of St.
17Note that (1− Et−1)Yt = (1− Et−1)Ỹt and (1− Et−1)Xt = (1− Et−1)X̃t.
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(A,L) must be “detectable” which means that every (non-zero) right-eigenvector of A

that lies in the nullspace of L must be associated with a stable eigenvalue.18

(A,B) must be “stabilizable” (A,B) are stabilizable when (A′, B′) are detectable.

To gain a better intuition for what these conditions entail, recall the notion of “canon-

ical” variables from Blanchard and Kahn (1980). Canonical variables form the basis for

solving expectational difference systems. and they are obtained from a rotation V S̃t of the

original variables such that V AV −1 is a (block) diagonal matrix. Intuitively, detectabil-

ity requires then the measurement equation to load on any unstable “canonical” variables

of (45).19 Stabilizability requires that at least every unstable canonical variable is affected

by a shock; which is easily satisfied if BB′ has full rank, when non-fundamental shocks

afflict equilibrium dynamics.

Provided the system given by (45) and (46) is detectable and stabilizable, only the

covariance restriction (39) — resulting from Yt|t = GXt|t — can put a lid on the number of

equilibria. However, (39) consists of only Ny ×Nz restrictions, which is typically less than

the number of Ny × (Nε + (Ny + 1)/2) parameters governing the evolution of endogenous

forecast errors.20

3.4 A Benchmark Solution

The previous section described a simple model of a cashless economy and characterized a

particular benchmark solution, see Section 2.2.3. The generic properties of this solution can

also be carried over to the more general framework described in this section, provided we put

a little more structure on the measurement vector as well as the number of exogenous and

endogenous variables: Specifically, assume that the backward-looking variables are purely

exogenous,

Xt+1 = AxxXt +Qεt

and that the policymaker observes all endogenous variables with error:

Zt = Yt + νt

18Formally: Av = λ v and Lv = 0 only if |λ| < 1 or v = 0.
19Detectability is, for example, violated by an information set that reflects only exogenous variables.
20Ny, Nε, and Nz denote the length of the vectors, Yt, εt and Zt, respectively. The coefficient matrix S

in (44) has Ny ×Nε elements and the effects from the Ny ×Ny coefficient matrix R can be identified only
up to a rotation.
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Furthermore, let there be (at least) as many endogenous variables as exogenous variables,

Ny = Nx, with an invertible mapping from Xt to Yt under full information, |G| ̸= 0, where

G is defined in (35).

In this case, the following benchmark solution for Yt is always consistent with equilib-

rium:

Yt = GXt − νt (48)

⇒ Zt = GXt ⇒ Xt|t = Xt (49)

⇒ Kx = G−1 Ky = I (50)

which also satisfies the sub-space condition Ky = GKx.

3.5 The Case of Lagged Information Revelation

Now consider imperfect information problems of the form where the measurement variable

is augmented to remove uncertainty about lagged expectations of current state variables:

Zt =

[
LSt

Et−1St

]
(51)

or a different representation with the effect that Zt spans Et−1St. Notice that, in this case,

Zt is also spanned by the history of[
Let

Et−1St

]
where et ≡ St −Et−1St.

Projections onto Zt can then be written as:

St|t = Et−1St + et|t S∗
t = et − et|t (52)

et|t = Kzt zt = Cet K =

[
Kε

Kη

]
= Cov (et, zt)Var (zt)

−1 (53)

Yt|t = Et−1Yt + ηt|t ηt|t = Kηzt (54)

Xt|t = Et−1Xt + εt|t εt|t = Kεzt (55)

In the case of lagged-revelation case filtering E(St|Zt) reduces to a projection on the

contemporaneous signal E(St|Zt) = E(St|Zt); due to the presence of Et−1St in Zt, the

signal Zt is a sufficient statistic for E(St|Zt).

In the dynamic Kalman filtering problem we typically employ the decomposition St|t =

S̃t|t +St|t−1 and — in those settings — we typically have St|t−1 ̸= Et−1St and thus S̃t ̸= et.
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However, since we can condition on knowledge of Et−1St at time t, we need not bother with

S̃t|t and can focus directly on et|t.
21

Given the solutions in terms of projections, Yt|t = ḠXt|t, and Xt+1|t = P̄ Xt|t, what is

left to be determined is thus merely ηt while satisfying the subspace condition. As will be

confirmed below, the subspace condition boils down to ηt|t = Ḡεt in this case.

Sub-space condition in the static-information problem: As before, the subspace

condition implies Yt|t = ḠXt|t and Xt+1 = P̄ Xt|t. We could still condition this down

onto Zt−1 and obtain Yt|t−1 = ḠXt|t−1; more relevant, however, are the implications of Zt

spanning Et−1St such that the subspace condition now implies

Yt|t = ḠXt|t ⇒ Et−1Yt = ḠEt−1Xt, ηt|t = Ḡεt|t (56)

Xt+1|t = P̄Xt|t ⇒ Et−1Xt+1 = P̄ Et−1Xt (57)

As a result, it is not only the case that the full-information mapping from anticipated

states to outcomes applies to forecasts made one step ahead by the policymaker, in the

static information problem this property also extends to one-step ahead forecasts made by

the public. In fact, when the backward-looking variables are purely exogenous, the static-

information case can merely contribute to additional volatility of endogenous forecast errors,

ηt, but not added persistence. When the backward-looking variables are, however, at least

in part endogenous, this additional volatility in ηt may also affect future outcomes.

Implications of sub-space condition for Et−1Yt From Yt|t = ḠXt|t follows Et−1Yt =

ḠEt−1Xt (since Et−1 is nested in Zt). Plugging this back into the original linear-difference

system yields the following restriction:

AyxXt +AyyYt + ÂyxXt|t + ÂyyYt|t = Ḡ
[
AxxXt +AxyYt + ÂxxXt|t + ÂxyYt|t

]
(58)

⇒ AyxXt +AyyYt + (Âyx + ÂyyḠ)Xt|t = Ḡ
[
AxxXt +AxyYt + (Âxx + ÂxyḠ)Xt|t

]
(59)

which further restricts Xt|t. Using (54) and (55) The last line can be split into:22

AyxEt−1Xt +AyyEt−1Yt + (Âyx + ÂyyḠ)Et−1Xt

= Ḡ
[
AxxEt−1Xt +AxyEt−1Yt + (Âxx + ÂxyḠ)Et−1Xt

]
(60)

21Notice that Et−1St is spanned by Zt here but typically not by Zt−1.
22Notice that our informational assumptions imply Et−1Xt|t = Et−1Xt and Et−1Yt|t = Et−1Yt.
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and

Ayxεt|t + Ayyηt|t + (Âyx + ÂyyḠ)εt|t = Ḡ
[
Axxεt|t +Axyηt|t + (Âxx + ÂxyḠ)εt|t

]
(61)

Together with Et−1Yt = ḠEt−1Xt|t (60) requires:

Ayx +AyyḠ+ (Âyx + ÂyyḠ) = Ḡ
[
Axx +AxyḠ+ (Âxx + ÂxyḠ)

]
(62)

which is satisfied by Ḡ by construction and we are left with the implications of (61).23

Considering (61) note that this equation can be rewritten as

(Ayy − ḠAxy)ηt|t =
[
Ḡ(Axx + Âxx + ÂxyḠ)−Ayx − (Âyx + ÂyyḠ)

]
εt|t (63)

(Ayy − ḠAxy)Kηzt =
[
Ḡ(Axx + Âxx + ÂxyḠ)−Ayx − (Âyx + ÂyyḠ)

]
Kεzt (64)

which imposes Ny × Nz restrictions on the projections ηt|t and εt|t, or, respectively, the

associated Kalman gains Kx and Ky. Based on (62), it is tempting to conclude that (61) is

always satisfied when ηt|t = ε̄t|t. However, such a conclusion would neglect cases where the

matrices premultiplying ηt|t and εt|t in (61) are not of full rank.

In particular, consider the case where Ayy = 0 and Axy = 0 (corresponding to features

of the simple Fisher model described above). In this case (61) does not impose a linear

restriction between ηt|t and εt|t but rather places a linear restriction on the elements of εt|t.

This reduces the set of possible solutions to the Fisher model to a single case.

In contrast, when |(Ayy − ḠAxy)| ̸= 0 we get

Kη = (Ayy − ḠAxy)
−1

[
Ḡ(Axx + Âxx + ÂxyḠ)−Ayx − (Âyx + ÂyyḠ)

]
Kε (65)

= ḠKε (66)

⇒ ηt|t = Ḡεt|t (67)

where the last step follows from the definition of Ḡ as solving the full-information problem.24

Assuming the above-described rank condition holds: Define γt = ηt−Ḡεt such that

the subspace condition requires γt|t = 0. Without loss of generality let γt = Gεt + bt where

Cov (bt, εt) = 0, and bt ∼ N(0,Ωbb) for some G and Ωbb which are yet to be determined.

In addition, let us specialize the problem as follows:

23To see this argument recall that Ḡ is defined by the solution to the full-information version of (31),
where Xt|t = Xt and Yt|t = Yt which requires (62) to hold.

24So see this, set up the full-information model as an undetermined coefficients problem and obtain (62)
from which it is straightforward to deduce (66) provided that |(Ayy − ḠAxy)| ̸= 0.
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• Assume |Ωεε| ̸= 0 such that we can rewrite the problem in a form where Ωεε = I.25

• Let zt = Cεεt + Cγγt and limit attention to problems where Cγ is square and of full

rank; in that case the problem can be rewritten in a form where Cy = I.26

• With Cy = I and Ωεε = I the subspace condition boils down to finding G and Ωbb

such that

GG′ + CεG
′ +Ωbb = 0 (68)

Notice that (68) has four terms, three of which are clearly symmetric; consequently,

CεG
′ must be symmetric as well and we can also write

GG′ +
1

2
CεG

′ +
1

2
GC ′

ε +Ωbb = 0 (69)

⇒ GG′ +
1

2
CεG

′ +
1

2
GC ′

ε +
1

4
CεC

′
ε =

1

4
CεC

′
ε − Ωbb > 0 (70)

where the inequality is understood as requiring positive (semi) definiteness. Since

CεC
′
ε is known, the inequality thus puts clear bounds on Ωbb.

While continuing to solve (70), we will ignore for a moment the required symmetry

of GC ′
ε and return to this restriction shortly. Ignoring the symmetry constraint, the

remainder of the problem can then be solved as follows:

1. Factorize left- and right-hand side of (70). the left-hand side can be factorized

into the ”square” of an Ny ×Nx vector:[
1
2Cε +G

] [
1
2Cε +G

]′
.

the right-hand side can be factorized with the (lower-triangular) Choleski de-

composition, which shall be denoted Ψ0.5:

Ψ = Ψ0.5(Ψ0.5)′

2. Consider the QR decomposition[
1
2C +G

]
=

[
R 0

]
Q

where R is lower triangular and QQ′ is orthonormal.27

25Alternatively, continue the problem with Ḡ = Ḡ(chol (Ωεε))
−1, G = G(chol (Ωεε))

−1 and C =

C

[
(chol (Ωεε))

−1 0
0 I

]
in lieu of Ḡ, G, and C, respectively.

26Alternatively, continue the problem with Zt = (Cγ)
−1zt as upper portion of the measurement variable.

27Notice that the QR is typically computed over the transposes of the above matrices:[
1
2
Cε +G

]′
= Q′

[
R′

0

]
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3. Recognize that (70) implies R = Ψ0.5. We can thus choose any from any or-

thonormal matrix Q of dimension Nx ×Nx and compute:

G =
[
Ψ0.5 0

]
Q− 1

2
Cε = Ψ0.5Q1 −

1

2
Cε (71)

where

Q =

[
Q1

Q2

]
, Q1Q

′
1 = I, Q1Q

′
2 = 0, Q2Q

′
2 = I. (72)

The above suggests that for a given Ωbb that is smaller (in the p.d. sense) than 0.25CεC
′
ε

we could trace out infinitely many G by picking any orthonormal Q. Indeed for solving (70)

that is correct. However, (70) does not impose symmetry on GC ′
ε; any solution to (69)

solves (70) but not vice versa. We need to choose an orthonormal Q that solves (70) and

ensures symmetry of GC ′. As will be shown next, this is easily done by constructing Q

from the singular-value decomposition (SVD) of an appropriate rotation of Cε.

We seek an Ny×Nx matrix Q1 (with Q1Q
′
1 = I) and such that Ψ0.5Q1C

′
ε is symmetric.28

Equivalently, let’s find Q1 such that Q1(C̃ε)
′ is symmetric where C̃ε = Ψ0.5Cε. The singular-

value decomposition of C̃ε yields:

C̃ε = USV ′ = U
[
S1 0

] [
V1 V2

]′
= US1V

′
1 (73)

where U and V are unitary matrices of dimensions Ny ×Ny and Nx ×Nx, respectively —

i.e. UU ′ = I and V V ′ = I — and S1 a diagonal Ny × Ny matrix. We thus seek Q1 such

that

Q1V1S1U
′ = US1V

′
1Q

′
1 (74)

which is can be satisfied in different ways, based on constructing Q1 from the SVD matrices

U , V1 and V2 while assuring Q1Q
′
1 = I:

1. Q1 = UV ′
1

2. Q1 = −UV ′
1

3. Q1 = BV ′
2 for some B of dimension Ny × (Nx − Ny), such that BB′ = I. Such a B

can only exist if Nx ≥ 2 ·Ny.
29

The first two solutions yield Q1C̃
′
ε = ±(USU ′) = ±(C̃εC̃

′
ε) whereas the third generates

Q1C̃
′
ε = 0.

and Q′ (R′) is then typically denoted ”Q” (R); in either case Q is orthonormal and R′ is upper triangular.
28Note that symmetry of Ψ0.5Q1C

′
ε ensures symmetry of (Ψ0.5Q1 − 0.5Cε)C

′
ε.

29Recall that V ′
2V2 = I and V ′

2V1 = 0 follows from V V ′ = I and that we need Q1Q
′
1 = I.

27



To recap: For a given |Ωεε| ≠ 0, construct C̃ε and take the SVD, then choose any of the

three ways listed above to construct Q1 and form G as in (71).

3.6 Set of Indeterminate Solutions in the General Case

[ TO BE WRITTEN ]

4 Some Numerical Applications

4.1 Lagged information Revelation in a New Keynesian Model

Consider the following New Keynesian model:

πt =
β

1 + β
Etπt+1 +

1

1 + β
πt−1 +

κ

1 + β
yt (75)

yt = Etyt+1 − σ(it − Etπt+1) + gt (76)

it = ϕππt|t + ϕyyt|t (77)

gt = ρgt−1 + εt (78)

The central bank receives noisy signals of inflation and output. With lagged information

revelation, all agents know perfectly what shocks occurred in the past. Nonetheless, with

lagged inflation appearing in the Phillips curve, even this limited information friction can

have persistent effects. Figures 3 and 4 show the impulse reposes of this model to a shock

in gt (which is akin to the real rate shock in our simple example) and belief shocks. We

vary the loadings on the belief shocks and then solve for the other coefficients determining

endogenous forecast errors. The dashed black lines represent full information responses and

the red lines are responses for various equilibria under indeterminacy in this model.30

[ REMAINDER OF THIS SECTION TO BE WRITTEN ]

5 Conclusion

The existence of multiple equilibria in dynamic general equilibrium models has impor-

tant effects on policy analysis and statistical inference, as well as many other applications.

Considering linear rational expectations models the existence and computation of such in-

determinate equilibria is well understood when all agents are perfectly informed (Lubik

& Schorfheide, 2004). In corresponding models with limited and asymmetric information

30The parameter values are calibrated to standard values, but in this section we just want to show that
qualitatively the multiplicity of equilibria that we find can be substantial.
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sets, the existence of multiple equilibria has not been much studied. We take a step in this

direction and show that in a linear Gaussian setting (i) multiple equilibria in asymmetric

information settings can arise even if the corresponding economy under full information

would deliver a unique equilibrium, (ii) when multiple equilibria exist, the set of such mul-

tiple equilibria is restricted by the structure of the economy, in particular the nature of the

less informed agent’s filtering problem and (iii) the structure of these multiple equilibria

depends crucially on the information set of the less informed agents, in particular whether

these agents have access to noisy estimates of endogenous or exogenous variables.
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Figure 1: Equilibrium conditions with the endogenous information set
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Figure 2: Impulse responses under various equilibria.
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Figure 3: Impulse responses in New Keynesian model to a gt shock.
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Figure 4: Impulse responses in New Keynesian model to a belief shock.
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A Partial, but Symmetric Information

In this appendix, we show that with partial, but symmetric information, equilibrium unique-

ness results of full information settings prevail in our example with exogenous information.

A.1 Equilibrium Conditions

Consider first the following set of equilibrium conditions (which could be considered a

natural modification of the full information conditions).

it = rt + πt+1|t (79)

it = ϕπt|t (80)

rt = ρrt−1 + εt (81)

Zt = rt + νt (82)

(83)

νt and εt are iid Gaussian random variables that are independent of each other at all lags

and leads.

A.2 The Fisher Equation And The Monetary Policy Rule

What is the Fisher equation? It is an equilibrium condition that tells us how markets price

the nominal bond in the economy. Both actors in the market have the same information

set (which does not include rt as long as var(νt) > 0, which we assume here). Thus, having

rt enter the Fisher equation does not make sense. Mathematically, use the monetary policy

rule to substitute out it:

ϕπt|t = rt + πt+1|t

Note that both expectations are conditional on the same limited information set which does

not include rt. Yet, the equation above says that ϕπt|t − πt+1|t = rt, so that rt should be in

the information set spanned by Zt. This contradicts the definition of Zt. As such, we don’t

have a fixed point in information sets.

A.3 The Modified Model

Thinking of the Fisher equation as the equilibrium bond pricing relationship, all variables

have to be in the agents’ information set. As such, the Fisher equation should read
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it = rt|t + πt+1|t

With this modified Fisher equation, the model is actually isomorphic to a full information

model with the exogenous shock process being given by rt|t instead of rt. Then standard

determinacy conditions apply.
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